Yirun Shen, Haoning Mao, Chen Li, Keer Li, Yi Liu, Jihai Liao, Shengsen Zhang, Yueping Fang, Xin Cai
{"title":"揭示高性能柔性/耐磨锌-空气电池集成阴极中氧催化的尖端效应","authors":"Yirun Shen, Haoning Mao, Chen Li, Keer Li, Yi Liu, Jihai Liao, Shengsen Zhang, Yueping Fang, Xin Cai","doi":"10.1007/s42765-024-00425-5","DOIUrl":null,"url":null,"abstract":"<div><p>The exploration of high-efficiency transition metal–nitrogen–carbon (M–N–C) catalysts is crucial for accelerating the kinetics of oxygen reduction/oxygen evolution reactions (ORR/OER). Fine-tuning the distribution of accessible metal sites and the correlated triphase interfaces within the M–N–C catalysts holds significant promise. In this study, we present an integrated electrocatalyst comprised of tip-enriched NiFe nanoalloys encapsulated within N-doped carbon nanotubes (NiFe@CNTs), synthesized using an <i>in-situ</i> wet-electrochemistry mediated approach. The well-defined NiFe@CNTs catalyst possesses a porous heterostructure, synergistic M–N<sub>x</sub>–C active sites, and intimate micro interfaces, facilitating accelerated redox kinetics. This leads to exceptional OER/ORR activities with a low overall Δ<i>E</i> of 630 mV. Experimental results and density functional theory calculations unveil the predominant electronic interplay between the apical bimetallic sites and neighboring N-doped CNTs, thereby enhancing the binding of intermediates on NiFe@CNTs. Molecular dynamics simulations reveal that the local gas–liquid environment surrounding NiFe@CNTs favors the diffusion/adsorption of the OH<sup>−</sup>/O<sub>2</sub> reactants. Consequently, NiFe@CNTs contribute to high-performance aqueous Zn–Air batteries (ZABs), exhibiting a high gravimetric energy density (936 Wh kg<sub>Zn</sub><sup>–1</sup>) and superb cycling stability (> 425 h) at 20 mA cm<sup>–2</sup>. Furthermore, solid-state ZABs based on NiFe@CNTs demonstrate impressive electrochemical performance (e.g., peak power density of 108 mW cm<sup>−2</sup>, specific energy of 1003 Wh kg<sub>Zn</sub><sup>–1</sup>) and prominent flexibility. This work illuminates a viable strategy for constructing metal site-specific, cobalt-free, and integrated M–N–C electrocatalysts for multifunctional catalysis and advanced/flexible energy storage applications.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":459,"journal":{"name":"Advanced Fiber Materials","volume":"6 5","pages":"1470 - 1482"},"PeriodicalIF":17.2000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unravelling the Tip Effect of Oxygen Catalysis in Integrated Cathode for High-Performance Flexible/Wearable Zn–Air Batteries\",\"authors\":\"Yirun Shen, Haoning Mao, Chen Li, Keer Li, Yi Liu, Jihai Liao, Shengsen Zhang, Yueping Fang, Xin Cai\",\"doi\":\"10.1007/s42765-024-00425-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The exploration of high-efficiency transition metal–nitrogen–carbon (M–N–C) catalysts is crucial for accelerating the kinetics of oxygen reduction/oxygen evolution reactions (ORR/OER). Fine-tuning the distribution of accessible metal sites and the correlated triphase interfaces within the M–N–C catalysts holds significant promise. In this study, we present an integrated electrocatalyst comprised of tip-enriched NiFe nanoalloys encapsulated within N-doped carbon nanotubes (NiFe@CNTs), synthesized using an <i>in-situ</i> wet-electrochemistry mediated approach. The well-defined NiFe@CNTs catalyst possesses a porous heterostructure, synergistic M–N<sub>x</sub>–C active sites, and intimate micro interfaces, facilitating accelerated redox kinetics. This leads to exceptional OER/ORR activities with a low overall Δ<i>E</i> of 630 mV. Experimental results and density functional theory calculations unveil the predominant electronic interplay between the apical bimetallic sites and neighboring N-doped CNTs, thereby enhancing the binding of intermediates on NiFe@CNTs. Molecular dynamics simulations reveal that the local gas–liquid environment surrounding NiFe@CNTs favors the diffusion/adsorption of the OH<sup>−</sup>/O<sub>2</sub> reactants. Consequently, NiFe@CNTs contribute to high-performance aqueous Zn–Air batteries (ZABs), exhibiting a high gravimetric energy density (936 Wh kg<sub>Zn</sub><sup>–1</sup>) and superb cycling stability (> 425 h) at 20 mA cm<sup>–2</sup>. Furthermore, solid-state ZABs based on NiFe@CNTs demonstrate impressive electrochemical performance (e.g., peak power density of 108 mW cm<sup>−2</sup>, specific energy of 1003 Wh kg<sub>Zn</sub><sup>–1</sup>) and prominent flexibility. This work illuminates a viable strategy for constructing metal site-specific, cobalt-free, and integrated M–N–C electrocatalysts for multifunctional catalysis and advanced/flexible energy storage applications.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":459,\"journal\":{\"name\":\"Advanced Fiber Materials\",\"volume\":\"6 5\",\"pages\":\"1470 - 1482\"},\"PeriodicalIF\":17.2000,\"publicationDate\":\"2024-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Fiber Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42765-024-00425-5\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Fiber Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42765-024-00425-5","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Unravelling the Tip Effect of Oxygen Catalysis in Integrated Cathode for High-Performance Flexible/Wearable Zn–Air Batteries
The exploration of high-efficiency transition metal–nitrogen–carbon (M–N–C) catalysts is crucial for accelerating the kinetics of oxygen reduction/oxygen evolution reactions (ORR/OER). Fine-tuning the distribution of accessible metal sites and the correlated triphase interfaces within the M–N–C catalysts holds significant promise. In this study, we present an integrated electrocatalyst comprised of tip-enriched NiFe nanoalloys encapsulated within N-doped carbon nanotubes (NiFe@CNTs), synthesized using an in-situ wet-electrochemistry mediated approach. The well-defined NiFe@CNTs catalyst possesses a porous heterostructure, synergistic M–Nx–C active sites, and intimate micro interfaces, facilitating accelerated redox kinetics. This leads to exceptional OER/ORR activities with a low overall ΔE of 630 mV. Experimental results and density functional theory calculations unveil the predominant electronic interplay between the apical bimetallic sites and neighboring N-doped CNTs, thereby enhancing the binding of intermediates on NiFe@CNTs. Molecular dynamics simulations reveal that the local gas–liquid environment surrounding NiFe@CNTs favors the diffusion/adsorption of the OH−/O2 reactants. Consequently, NiFe@CNTs contribute to high-performance aqueous Zn–Air batteries (ZABs), exhibiting a high gravimetric energy density (936 Wh kgZn–1) and superb cycling stability (> 425 h) at 20 mA cm–2. Furthermore, solid-state ZABs based on NiFe@CNTs demonstrate impressive electrochemical performance (e.g., peak power density of 108 mW cm−2, specific energy of 1003 Wh kgZn–1) and prominent flexibility. This work illuminates a viable strategy for constructing metal site-specific, cobalt-free, and integrated M–N–C electrocatalysts for multifunctional catalysis and advanced/flexible energy storage applications.
期刊介绍:
Advanced Fiber Materials is a hybrid, peer-reviewed, international and interdisciplinary research journal which aims to publish the most important papers in fibers and fiber-related devices as well as their applications.Indexed by SCIE, EI, Scopus et al.
Publishing on fiber or fiber-related materials, technology, engineering and application.