{"title":"使用屏蔽语言模型对多跳问题分解进行评分","authors":"Abdellah Hamouda Sidhoum, M'hamed Mataoui, Faouzi Sebbak, Adil Imad Eddine Hosni, Kamel Smaili","doi":"10.1145/3665140","DOIUrl":null,"url":null,"abstract":"Question answering (QA) is a sub-field of Natural Language Processing (NLP) that focuses on developing systems capable of answering natural language queries. Within this domain, multi-hop question answering represents an advanced QA task that requires gathering and reasoning over multiple pieces of information from diverse sources or passages. To handle the complexity of multi-hop questions, question decomposition has been proven to be a valuable approach. This technique involves breaking down complex questions into simpler sub-questions, reducing the complexity of the problem. However, it’s worth noting that existing question decomposition methods often rely on training data, which may not always be readily available for low-resource languages or specialized domains. To address this issue, we propose a novel approach that utilizes pre-trained masked language models to score decomposition candidates in a zero-shot manner. The method involves generating decomposition candidates, scoring them using a pseudo-log likelihood estimation, and ranking them based on their scores. To evaluate the efficacy of the decomposition process, we conducted experiments on two datasets annotated on decomposition in two different languages, Arabic and English. Subsequently, we integrated our approach into a complete QA system and conducted a reading comprehension performance evaluation on the HotpotQA dataset. The obtained results emphasize that while the system exhibited a small drop in performance, it still maintained a significant advance compared to the baseline model. The proposed approach highlights the efficiency of the language model scoring technique in complex reasoning tasks such as multi-hop question decomposition.","PeriodicalId":54312,"journal":{"name":"ACM Transactions on Asian and Low-Resource Language Information Processing","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scoring Multi-hop Question Decomposition Using Masked Language Models\",\"authors\":\"Abdellah Hamouda Sidhoum, M'hamed Mataoui, Faouzi Sebbak, Adil Imad Eddine Hosni, Kamel Smaili\",\"doi\":\"10.1145/3665140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Question answering (QA) is a sub-field of Natural Language Processing (NLP) that focuses on developing systems capable of answering natural language queries. Within this domain, multi-hop question answering represents an advanced QA task that requires gathering and reasoning over multiple pieces of information from diverse sources or passages. To handle the complexity of multi-hop questions, question decomposition has been proven to be a valuable approach. This technique involves breaking down complex questions into simpler sub-questions, reducing the complexity of the problem. However, it’s worth noting that existing question decomposition methods often rely on training data, which may not always be readily available for low-resource languages or specialized domains. To address this issue, we propose a novel approach that utilizes pre-trained masked language models to score decomposition candidates in a zero-shot manner. The method involves generating decomposition candidates, scoring them using a pseudo-log likelihood estimation, and ranking them based on their scores. To evaluate the efficacy of the decomposition process, we conducted experiments on two datasets annotated on decomposition in two different languages, Arabic and English. Subsequently, we integrated our approach into a complete QA system and conducted a reading comprehension performance evaluation on the HotpotQA dataset. The obtained results emphasize that while the system exhibited a small drop in performance, it still maintained a significant advance compared to the baseline model. The proposed approach highlights the efficiency of the language model scoring technique in complex reasoning tasks such as multi-hop question decomposition.\",\"PeriodicalId\":54312,\"journal\":{\"name\":\"ACM Transactions on Asian and Low-Resource Language Information Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Asian and Low-Resource Language Information Processing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3665140\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Asian and Low-Resource Language Information Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3665140","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Scoring Multi-hop Question Decomposition Using Masked Language Models
Question answering (QA) is a sub-field of Natural Language Processing (NLP) that focuses on developing systems capable of answering natural language queries. Within this domain, multi-hop question answering represents an advanced QA task that requires gathering and reasoning over multiple pieces of information from diverse sources or passages. To handle the complexity of multi-hop questions, question decomposition has been proven to be a valuable approach. This technique involves breaking down complex questions into simpler sub-questions, reducing the complexity of the problem. However, it’s worth noting that existing question decomposition methods often rely on training data, which may not always be readily available for low-resource languages or specialized domains. To address this issue, we propose a novel approach that utilizes pre-trained masked language models to score decomposition candidates in a zero-shot manner. The method involves generating decomposition candidates, scoring them using a pseudo-log likelihood estimation, and ranking them based on their scores. To evaluate the efficacy of the decomposition process, we conducted experiments on two datasets annotated on decomposition in two different languages, Arabic and English. Subsequently, we integrated our approach into a complete QA system and conducted a reading comprehension performance evaluation on the HotpotQA dataset. The obtained results emphasize that while the system exhibited a small drop in performance, it still maintained a significant advance compared to the baseline model. The proposed approach highlights the efficiency of the language model scoring technique in complex reasoning tasks such as multi-hop question decomposition.
期刊介绍:
The ACM Transactions on Asian and Low-Resource Language Information Processing (TALLIP) publishes high quality original archival papers and technical notes in the areas of computation and processing of information in Asian languages, low-resource languages of Africa, Australasia, Oceania and the Americas, as well as related disciplines. The subject areas covered by TALLIP include, but are not limited to:
-Computational Linguistics: including computational phonology, computational morphology, computational syntax (e.g. parsing), computational semantics, computational pragmatics, etc.
-Linguistic Resources: including computational lexicography, terminology, electronic dictionaries, cross-lingual dictionaries, electronic thesauri, etc.
-Hardware and software algorithms and tools for Asian or low-resource language processing, e.g., handwritten character recognition.
-Information Understanding: including text understanding, speech understanding, character recognition, discourse processing, dialogue systems, etc.
-Machine Translation involving Asian or low-resource languages.
-Information Retrieval: including natural language processing (NLP) for concept-based indexing, natural language query interfaces, semantic relevance judgments, etc.
-Information Extraction and Filtering: including automatic abstraction, user profiling, etc.
-Speech processing: including text-to-speech synthesis and automatic speech recognition.
-Multimedia Asian Information Processing: including speech, image, video, image/text translation, etc.
-Cross-lingual information processing involving Asian or low-resource languages.
-Papers that deal in theory, systems design, evaluation and applications in the aforesaid subjects are appropriate for TALLIP. Emphasis will be placed on the originality and the practical significance of the reported research.