废弃生物质增值的潜力和机遇,促进可持续生物甲烷生产

IF 6.2 3区 工程技术 Q1 ENGINEERING, CHEMICAL ChemBioEng Reviews Pub Date : 2024-05-15 DOI:10.1002/cben.202400004
Akshaya K, Dr. Rangabhashiyam Selvasembian
{"title":"废弃生物质增值的潜力和机遇,促进可持续生物甲烷生产","authors":"Akshaya K,&nbsp;Dr. Rangabhashiyam Selvasembian","doi":"10.1002/cben.202400004","DOIUrl":null,"url":null,"abstract":"<p>The increasing global population has led to a surge in waste production across various fields including agriculture, industry, marine, and household, posing significant waste management challenges. Concurrently, the world is facing an energy crisis, emphasizing the crucial need for sustainable and renewable energy sources. This comprehensive review examines the potential of biomethane production from diverse waste biomass. Feedstock characteristics; anaerobic digestion (AD); biochemical pathways; factors influencing AD; various pretreatment methods such as physical, chemical, biological, and combined; existing policies supporting biomethane production; and potential new policy implications are discussed in this review along with the significance of waste-to-energy integration. Our findings indicate that lignocellulosic wastes, primarily agricultural waste, stand out as the most efficient biomass source for biomethane production due to their characteristics such as high carbon/nitrogen ratio, low ash content, and their abundant availability. Among pretreatment methods, combined pretreatment emerges as the most promising option, offering flexibility and effectiveness in enhancing biomethane production. Additionally, the two-stage digester configuration proves advantageous in overcoming limitations associated with single-stage digesters such as pH inhibition. Altogether, the review highlights that biomethane production from waste biomass through AD offers a sustainable solution.</p>","PeriodicalId":48623,"journal":{"name":"ChemBioEng Reviews","volume":"11 4","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Potential and Opportunities of Waste Biomass Valorization Toward Sustainable Biomethane Production\",\"authors\":\"Akshaya K,&nbsp;Dr. Rangabhashiyam Selvasembian\",\"doi\":\"10.1002/cben.202400004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The increasing global population has led to a surge in waste production across various fields including agriculture, industry, marine, and household, posing significant waste management challenges. Concurrently, the world is facing an energy crisis, emphasizing the crucial need for sustainable and renewable energy sources. This comprehensive review examines the potential of biomethane production from diverse waste biomass. Feedstock characteristics; anaerobic digestion (AD); biochemical pathways; factors influencing AD; various pretreatment methods such as physical, chemical, biological, and combined; existing policies supporting biomethane production; and potential new policy implications are discussed in this review along with the significance of waste-to-energy integration. Our findings indicate that lignocellulosic wastes, primarily agricultural waste, stand out as the most efficient biomass source for biomethane production due to their characteristics such as high carbon/nitrogen ratio, low ash content, and their abundant availability. Among pretreatment methods, combined pretreatment emerges as the most promising option, offering flexibility and effectiveness in enhancing biomethane production. Additionally, the two-stage digester configuration proves advantageous in overcoming limitations associated with single-stage digesters such as pH inhibition. Altogether, the review highlights that biomethane production from waste biomass through AD offers a sustainable solution.</p>\",\"PeriodicalId\":48623,\"journal\":{\"name\":\"ChemBioEng Reviews\",\"volume\":\"11 4\",\"pages\":\"\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemBioEng Reviews\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cben.202400004\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemBioEng Reviews","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cben.202400004","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

全球人口的不断增长导致农业、工业、海洋和家庭等各个领域的废物产量激增,给废物管理带来了巨大挑战。与此同时,世界正面临着能源危机,强调了对可持续和可再生能源的迫切需要。本综述探讨了利用各种废弃生物质生产生物甲烷的潜力。本综述讨论了原料特性、厌氧消化(AD)、生化途径、影响厌氧消化的因素、各种预处理方法(如物理、化学、生物和组合方法)、支持生物甲烷生产的现有政策、潜在的新政策影响以及废物变能源一体化的意义。我们的研究结果表明,木质纤维素废料(主要是农业废料)因其高碳氮比、低灰分含量和丰富的可利用性等特点,成为生产生物甲烷最有效的生物质来源。在各种预处理方法中,组合预处理是最有前途的选择,它在提高生物甲烷产量方面具有灵活性和有效性。此外,两级消化器配置在克服单级消化器的局限性(如 pH 值抑制)方面具有优势。综上所述,通过厌氧消化(AD)技术从废弃生物质中生产生物甲烷是一种可持续的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Potential and Opportunities of Waste Biomass Valorization Toward Sustainable Biomethane Production

The increasing global population has led to a surge in waste production across various fields including agriculture, industry, marine, and household, posing significant waste management challenges. Concurrently, the world is facing an energy crisis, emphasizing the crucial need for sustainable and renewable energy sources. This comprehensive review examines the potential of biomethane production from diverse waste biomass. Feedstock characteristics; anaerobic digestion (AD); biochemical pathways; factors influencing AD; various pretreatment methods such as physical, chemical, biological, and combined; existing policies supporting biomethane production; and potential new policy implications are discussed in this review along with the significance of waste-to-energy integration. Our findings indicate that lignocellulosic wastes, primarily agricultural waste, stand out as the most efficient biomass source for biomethane production due to their characteristics such as high carbon/nitrogen ratio, low ash content, and their abundant availability. Among pretreatment methods, combined pretreatment emerges as the most promising option, offering flexibility and effectiveness in enhancing biomethane production. Additionally, the two-stage digester configuration proves advantageous in overcoming limitations associated with single-stage digesters such as pH inhibition. Altogether, the review highlights that biomethane production from waste biomass through AD offers a sustainable solution.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemBioEng Reviews
ChemBioEng Reviews Biochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
7.90
自引率
2.10%
发文量
45
期刊介绍: Launched in 2014, ChemBioEng Reviews is aimed to become a top-ranking journal publishing review articles offering information on significant developments and provide fundamental knowledge of important topics in the fields of chemical engineering and biotechnology. The journal supports academics and researchers in need for concise, easy to access information on specific topics. The articles cover all fields of (bio-) chemical engineering and technology, e.g.,
期刊最新文献
Cover Picture: ChemBioEng Reviews 1/2025 Masthead: ChemBioEng Reviews 1/2025 Table of Contents: ChemBioEng Reviews 1/2025 Critical Review of Corrugation in Tubular Heat Exchangers: Focus on Thermal and Economical Aspects Technological Advancement in Product Valorization of Agricultural Wastes Treated with Deep Eutectic Solvents: A Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1