通过自动优化神经网络实现低采样高质量哈达玛和傅立叶单像素成像

IF 1.9 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Frontiers in Physics Pub Date : 2024-05-15 DOI:10.3389/fphy.2024.1391608
Guozhong Lei, Wenchang Lai, Qi Meng, Wenda Cui, Hao Liu, Yan Wang, Kai Han
{"title":"通过自动优化神经网络实现低采样高质量哈达玛和傅立叶单像素成像","authors":"Guozhong Lei, Wenchang Lai, Qi Meng, Wenda Cui, Hao Liu, Yan Wang, Kai Han","doi":"10.3389/fphy.2024.1391608","DOIUrl":null,"url":null,"abstract":"In this manuscript, an automated optimization neural network is applied in Hadamard single-pixel imaging (H-SPI) and Fourier single-pixel imaging (F-SPI) to improve the imaging quality at low sampling ratios which is called AO-Net. By projecting Hadamard or Fourier basis illumination light fields onto the object, a single-pixel detector is used to collect the reflected light intensities from object. The one-dimensional detection values are fed into the designed AO-Net, and the network can automatically optimize. Finally, high-quality images are output through multiple iterations without pre-training and datasets. Numerical simulations and experiments demonstrate that AO-Net outperforms other existing widespread methods for both binary and grayscale images at low sampling ratios. Specially, the Structure Similarity Index Measure value of the binary reconstructed image can reach more than 0.95 when the sampling ratio is less than 3%. Therefore, AO-Net holds great potential for applications in the fields of complex environment imaging and moving object imaging.","PeriodicalId":12507,"journal":{"name":"Frontiers in Physics","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low-sampling high-quality Hadamard and Fourier single-pixel imaging through automated optimization neural network\",\"authors\":\"Guozhong Lei, Wenchang Lai, Qi Meng, Wenda Cui, Hao Liu, Yan Wang, Kai Han\",\"doi\":\"10.3389/fphy.2024.1391608\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this manuscript, an automated optimization neural network is applied in Hadamard single-pixel imaging (H-SPI) and Fourier single-pixel imaging (F-SPI) to improve the imaging quality at low sampling ratios which is called AO-Net. By projecting Hadamard or Fourier basis illumination light fields onto the object, a single-pixel detector is used to collect the reflected light intensities from object. The one-dimensional detection values are fed into the designed AO-Net, and the network can automatically optimize. Finally, high-quality images are output through multiple iterations without pre-training and datasets. Numerical simulations and experiments demonstrate that AO-Net outperforms other existing widespread methods for both binary and grayscale images at low sampling ratios. Specially, the Structure Similarity Index Measure value of the binary reconstructed image can reach more than 0.95 when the sampling ratio is less than 3%. Therefore, AO-Net holds great potential for applications in the fields of complex environment imaging and moving object imaging.\",\"PeriodicalId\":12507,\"journal\":{\"name\":\"Frontiers in Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3389/fphy.2024.1391608\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3389/fphy.2024.1391608","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在本手稿中,一种自动优化神经网络被应用于哈达玛单像素成像(H-SPI)和傅立叶单像素成像(F-SPI),以提高低采样率下的成像质量,这种网络被称为 AO-Net。通过将哈达玛或傅里叶基照明光场投射到物体上,使用单像素探测器收集物体的反射光强度。将一维检测值输入设计好的 AO 网络,网络就能自动优化。最后,通过多次迭代输出高质量图像,而无需预先训练和数据集。数值模拟和实验证明,在低采样率的二值图像和灰度图像中,AO-Net 的表现优于其他现有的普遍方法。特别是,当采样率小于 3% 时,二值重建图像的结构相似性指数测量值可以达到 0.95 以上。因此,AO-Net 在复杂环境成像和移动物体成像领域具有巨大的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Low-sampling high-quality Hadamard and Fourier single-pixel imaging through automated optimization neural network
In this manuscript, an automated optimization neural network is applied in Hadamard single-pixel imaging (H-SPI) and Fourier single-pixel imaging (F-SPI) to improve the imaging quality at low sampling ratios which is called AO-Net. By projecting Hadamard or Fourier basis illumination light fields onto the object, a single-pixel detector is used to collect the reflected light intensities from object. The one-dimensional detection values are fed into the designed AO-Net, and the network can automatically optimize. Finally, high-quality images are output through multiple iterations without pre-training and datasets. Numerical simulations and experiments demonstrate that AO-Net outperforms other existing widespread methods for both binary and grayscale images at low sampling ratios. Specially, the Structure Similarity Index Measure value of the binary reconstructed image can reach more than 0.95 when the sampling ratio is less than 3%. Therefore, AO-Net holds great potential for applications in the fields of complex environment imaging and moving object imaging.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Physics
Frontiers in Physics Mathematics-Mathematical Physics
CiteScore
4.50
自引率
6.50%
发文量
1215
审稿时长
12 weeks
期刊介绍: Frontiers in Physics publishes rigorously peer-reviewed research across the entire field, from experimental, to computational and theoretical physics. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, engineers and the public worldwide.
期刊最新文献
Theory of Turing pattern formation and its experimental realization in the CIMA reaction system in the presence of materials lowering the diffusivity of activators Surface roughness measurement using microscopic vision and deep learning Core and edge modeling of JT-60SA H-mode highly radiative scenarios using SOLEDGE3X–EIRENE and METIS codes Perspective of perovskite-based X-ray hybrid pixel array detectors MOSkin dosimetry for an ultra-high dose-rate, very high-energy electron irradiation environment at PEER
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1