深度学习辅助下的智能医疗检测和诊断

Jingxiao Tian, Hanzhe Li, Yaqian Qi, Xiangxiang Wang, Yuan Feng
{"title":"深度学习辅助下的智能医疗检测和诊断","authors":"Jingxiao Tian, Hanzhe Li, Yaqian Qi, Xiangxiang Wang, Yuan Feng","doi":"10.54254/2755-2721/64/20241356","DOIUrl":null,"url":null,"abstract":"The integration of artificial intelligence (AI) in healthcare has led to the development of intelligent auxiliary diagnosis systems, enhancing diagnostic capabilities across various medical domains. These AI-assisted systems leverage deep learning algorithms to aid healthcare professionals in disease screening, localization of focal areas, and treatment plan selection. With policies emphasizing innovation in medical AI technology, particularly in China, AI-assisted diagnosis systems have emerged as valuable tools in improving diagnostic accuracy and efficiency. These systems, categorized into image-assisted and text-assisted modes, utilize medical imaging data and clinical diagnosis records to provide diagnostic support. In the context of lung cancer diagnosis and treatment, AI-assisted integrated solutions show promise in early detection and treatment decision support, particularly in the detection of pulmonary nodules. Overall, the integration of AI in healthcare holds significant potential for improving diagnostic accuracy, efficiency, and patient outcomes, contributing to advancements in medical practice.","PeriodicalId":350976,"journal":{"name":"Applied and Computational Engineering","volume":"64 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intelligent medical detection and diagnosis assisted by deep learning\",\"authors\":\"Jingxiao Tian, Hanzhe Li, Yaqian Qi, Xiangxiang Wang, Yuan Feng\",\"doi\":\"10.54254/2755-2721/64/20241356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The integration of artificial intelligence (AI) in healthcare has led to the development of intelligent auxiliary diagnosis systems, enhancing diagnostic capabilities across various medical domains. These AI-assisted systems leverage deep learning algorithms to aid healthcare professionals in disease screening, localization of focal areas, and treatment plan selection. With policies emphasizing innovation in medical AI technology, particularly in China, AI-assisted diagnosis systems have emerged as valuable tools in improving diagnostic accuracy and efficiency. These systems, categorized into image-assisted and text-assisted modes, utilize medical imaging data and clinical diagnosis records to provide diagnostic support. In the context of lung cancer diagnosis and treatment, AI-assisted integrated solutions show promise in early detection and treatment decision support, particularly in the detection of pulmonary nodules. Overall, the integration of AI in healthcare holds significant potential for improving diagnostic accuracy, efficiency, and patient outcomes, contributing to advancements in medical practice.\",\"PeriodicalId\":350976,\"journal\":{\"name\":\"Applied and Computational Engineering\",\"volume\":\"64 11\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied and Computational Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54254/2755-2721/64/20241356\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54254/2755-2721/64/20241356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人工智能(AI)与医疗保健的结合促进了智能辅助诊断系统的发展,增强了各个医疗领域的诊断能力。这些人工智能辅助系统利用深度学习算法,帮助医护人员进行疾病筛查、病灶定位和治疗方案选择。随着政策强调医疗人工智能技术的创新,尤其是在中国,人工智能辅助诊断系统已成为提高诊断准确性和效率的重要工具。这些系统分为图像辅助和文本辅助两种模式,利用医学影像数据和临床诊断记录提供诊断支持。在肺癌诊断和治疗方面,人工智能辅助综合解决方案在早期检测和治疗决策支持方面大有可为,尤其是在肺结节的检测方面。总之,人工智能与医疗保健的整合在提高诊断准确性、效率和患者预后方面具有巨大潜力,有助于推动医疗实践的进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Intelligent medical detection and diagnosis assisted by deep learning
The integration of artificial intelligence (AI) in healthcare has led to the development of intelligent auxiliary diagnosis systems, enhancing diagnostic capabilities across various medical domains. These AI-assisted systems leverage deep learning algorithms to aid healthcare professionals in disease screening, localization of focal areas, and treatment plan selection. With policies emphasizing innovation in medical AI technology, particularly in China, AI-assisted diagnosis systems have emerged as valuable tools in improving diagnostic accuracy and efficiency. These systems, categorized into image-assisted and text-assisted modes, utilize medical imaging data and clinical diagnosis records to provide diagnostic support. In the context of lung cancer diagnosis and treatment, AI-assisted integrated solutions show promise in early detection and treatment decision support, particularly in the detection of pulmonary nodules. Overall, the integration of AI in healthcare holds significant potential for improving diagnostic accuracy, efficiency, and patient outcomes, contributing to advancements in medical practice.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Implementation of seamless assistance with Google Assistant leveraging cloud computing Deep learning vulnerability analysis against adversarial attacks Comparison of deep learning models based on Chest X-ray image classification DOA estimation technology based on array signal processing nested array Precise positioning and prediction system for autonomous driving based on generative artificial intelligence
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1