用于可见光驱动的光催化 C(sp3)-H 键活化的三维空腔致密 CsPbBr3 量子点

IF 19.5 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Carbon Energy Pub Date : 2024-05-15 DOI:10.1002/cey2.559
Yujie Gao, Handong Jin, D. Esteban, Bo Weng, R. A. Saha, Min-Quan Yang, S. Bals, J. Steele, Haowei Huang, Maarten B. J. Roeffaers
{"title":"用于可见光驱动的光催化 C(sp3)-H 键活化的三维空腔致密 CsPbBr3 量子点","authors":"Yujie Gao, Handong Jin, D. Esteban, Bo Weng, R. A. Saha, Min-Quan Yang, S. Bals, J. Steele, Haowei Huang, Maarten B. J. Roeffaers","doi":"10.1002/cey2.559","DOIUrl":null,"url":null,"abstract":"Metal halide perovskite (MHP) quantum dots (QDs) offer immense potential for several areas of photonics research due to their easy and low‐cost fabrication and excellent optoelectronic properties. However, practical applications of MHP QDs are limited by their poor stability and, in particular, their tendency to aggregate. Here, we develop a two‐step double‐solvent strategy to grow and confine CsPbBr3 QDs within the three‐dimensional (3D) cavities of a mesoporous SBA‐16 silica scaffold (CsPbBr3@SBA‐16). Strong confinement and separation of the MHP QDs lead to a relatively uniform size distribution, narrow luminescence, and good ambient stability over 2 months. In addition, the CsPbBr3@SBA‐16 presents a high activity and stability for visible‐light‐driven photocatalytic toluene C(sp3)–H bond activation to produce benzaldehyde with ∼730 µmol g−1 h−1 yield rate and near‐unity selectivity. Similarly, the structural stability of CsPbBr3@SBA‐16 QDs is superior to that of both pure CsPbBr3 QDs and those confined in MCM‐41 with 1D channels.","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":null,"pages":null},"PeriodicalIF":19.5000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3D‐cavity‐confined CsPbBr3 quantum dots for visible‐light‐driven photocatalytic C(sp3)–H bond activation\",\"authors\":\"Yujie Gao, Handong Jin, D. Esteban, Bo Weng, R. A. Saha, Min-Quan Yang, S. Bals, J. Steele, Haowei Huang, Maarten B. J. Roeffaers\",\"doi\":\"10.1002/cey2.559\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metal halide perovskite (MHP) quantum dots (QDs) offer immense potential for several areas of photonics research due to their easy and low‐cost fabrication and excellent optoelectronic properties. However, practical applications of MHP QDs are limited by their poor stability and, in particular, their tendency to aggregate. Here, we develop a two‐step double‐solvent strategy to grow and confine CsPbBr3 QDs within the three‐dimensional (3D) cavities of a mesoporous SBA‐16 silica scaffold (CsPbBr3@SBA‐16). Strong confinement and separation of the MHP QDs lead to a relatively uniform size distribution, narrow luminescence, and good ambient stability over 2 months. In addition, the CsPbBr3@SBA‐16 presents a high activity and stability for visible‐light‐driven photocatalytic toluene C(sp3)–H bond activation to produce benzaldehyde with ∼730 µmol g−1 h−1 yield rate and near‐unity selectivity. Similarly, the structural stability of CsPbBr3@SBA‐16 QDs is superior to that of both pure CsPbBr3 QDs and those confined in MCM‐41 with 1D channels.\",\"PeriodicalId\":33706,\"journal\":{\"name\":\"Carbon Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":19.5000,\"publicationDate\":\"2024-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/cey2.559\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/cey2.559","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

金属卤化物过氧化物(MHP)量子点(QDs)因其易于制造、成本低廉以及出色的光电特性,为多个光子学研究领域提供了巨大的潜力。然而,MHP QDs 的实际应用却因其稳定性差,特别是容易聚集而受到限制。在此,我们开发了一种分两步进行的双溶剂策略,在介孔 SBA-16 硅支架的三维(3D)空腔(CsPbBr3@SBA-16)中生长和限制 CsPbBr3 QD。MHP QDs 的强封闭性和分离性使其具有相对均匀的尺寸分布、窄发光范围和超过 2 个月的良好环境稳定性。此外,CsPbBr3@SBA-16 在可见光驱动的光催化甲苯 C(sp3)-H键活化生成苯甲醛的过程中具有高活性和稳定性,产率达∼730 µmol g-1 h-1,选择性接近均一。同样,CsPbBr3@SBA-16 QDs 的结构稳定性也优于纯 CsPbBr3 QDs 和封闭在具有 1D 通道的 MCM-41 中的 CsPbBr3 QDs。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
3D‐cavity‐confined CsPbBr3 quantum dots for visible‐light‐driven photocatalytic C(sp3)–H bond activation
Metal halide perovskite (MHP) quantum dots (QDs) offer immense potential for several areas of photonics research due to their easy and low‐cost fabrication and excellent optoelectronic properties. However, practical applications of MHP QDs are limited by their poor stability and, in particular, their tendency to aggregate. Here, we develop a two‐step double‐solvent strategy to grow and confine CsPbBr3 QDs within the three‐dimensional (3D) cavities of a mesoporous SBA‐16 silica scaffold (CsPbBr3@SBA‐16). Strong confinement and separation of the MHP QDs lead to a relatively uniform size distribution, narrow luminescence, and good ambient stability over 2 months. In addition, the CsPbBr3@SBA‐16 presents a high activity and stability for visible‐light‐driven photocatalytic toluene C(sp3)–H bond activation to produce benzaldehyde with ∼730 µmol g−1 h−1 yield rate and near‐unity selectivity. Similarly, the structural stability of CsPbBr3@SBA‐16 QDs is superior to that of both pure CsPbBr3 QDs and those confined in MCM‐41 with 1D channels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Carbon Energy
Carbon Energy Multiple-
CiteScore
25.70
自引率
10.70%
发文量
116
审稿时长
4 weeks
期刊介绍: Carbon Energy is an international journal that focuses on cutting-edge energy technology involving carbon utilization and carbon emission control. It provides a platform for researchers to communicate their findings and critical opinions and aims to bring together the communities of advanced material and energy. The journal covers a broad range of energy technologies, including energy storage, photocatalysis, electrocatalysis, photoelectrocatalysis, and thermocatalysis. It covers all forms of energy, from conventional electric and thermal energy to those that catalyze chemical and biological transformations. Additionally, Carbon Energy promotes new technologies for controlling carbon emissions and the green production of carbon materials. The journal welcomes innovative interdisciplinary research with wide impact. It is indexed in various databases, including Advanced Technologies & Aerospace Collection/Database, Biological Science Collection/Database, CAS, DOAJ, Environmental Science Collection/Database, Web of Science and Technology Collection.
期刊最新文献
Issue Information Cover Image, Volume 6, Number 10, October 2024 Back Cover Image, Volume 6, Number 10, October 2024 Interface and doping engineering of V2C-MXene-based electrocatalysts for enhanced electrocatalysis of overall water splitting Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1