Aaron Petty, Sergei Senko, H. Strandman, Essi Jyrkinen, Olli-Pekka Tikkanen, A. Kilpeläinen, Heli Peltola
{"title":"森林管理强度和气候变化严重程度对北方条件下苏格兰松树、挪威云杉和银桦林木的体积增长、木材产量、碳储量和枯木量的影响","authors":"Aaron Petty, Sergei Senko, H. Strandman, Essi Jyrkinen, Olli-Pekka Tikkanen, A. Kilpeläinen, Heli Peltola","doi":"10.1139/cjfr-2023-0295","DOIUrl":null,"url":null,"abstract":"We studied how management intensity and climate severity affect volume growth, timber yield, carbon stocks, and the amount of deadwood in Scots pine (Pinus sylvestris (L.), Norway spruce (Picea abies (L.) Karst.) and silver birch (Betula pendula Roth.) dominated stands in the Republic of Karelia and Arkhangelsk region of northwest Russia. Using the forest ecosystem model (SIMA) under different climates (current and representative concentration pathway scenarios, RCP4.5 and RCP8.5), no-thinning, low, medium, and high intensity thinning rotational forestry regimes were simulated. Under RCPs, the volume growth and timber yield (5-53%), carbon stocks (1-22%), and deadwood amounts (11-75%) increased for all Scots pine and silver birch stands. The use of low intensity management increased volume growth and carbon stocks (3-16%) and deadwood amount (up to 60%) under RCPs, but not timber yield (±3%) in these stands. For Norway spruce stands, the volume growth (5-26%), timber yield (23-75%), and carbon stocks (5-15%) decreased under RCP8.5, but deadwood amount increased (up to 142%). Intensive management increased volume growth (4-19%), timber yield (4-63%), carbon stocks (up to 14%) and deadwood amounts (up to 49%). Our results highlight that effects of climate severity and management intensity are site and species-specific for Eurasian’s boreal forests.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"114 21","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of forest management intensity and climate change severity on volume growth, timber yield, carbon stocks, and the amount of deadwood in Scots pine, Norway spruce and silver birch stands in boreal conditions\",\"authors\":\"Aaron Petty, Sergei Senko, H. Strandman, Essi Jyrkinen, Olli-Pekka Tikkanen, A. Kilpeläinen, Heli Peltola\",\"doi\":\"10.1139/cjfr-2023-0295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We studied how management intensity and climate severity affect volume growth, timber yield, carbon stocks, and the amount of deadwood in Scots pine (Pinus sylvestris (L.), Norway spruce (Picea abies (L.) Karst.) and silver birch (Betula pendula Roth.) dominated stands in the Republic of Karelia and Arkhangelsk region of northwest Russia. Using the forest ecosystem model (SIMA) under different climates (current and representative concentration pathway scenarios, RCP4.5 and RCP8.5), no-thinning, low, medium, and high intensity thinning rotational forestry regimes were simulated. Under RCPs, the volume growth and timber yield (5-53%), carbon stocks (1-22%), and deadwood amounts (11-75%) increased for all Scots pine and silver birch stands. The use of low intensity management increased volume growth and carbon stocks (3-16%) and deadwood amount (up to 60%) under RCPs, but not timber yield (±3%) in these stands. For Norway spruce stands, the volume growth (5-26%), timber yield (23-75%), and carbon stocks (5-15%) decreased under RCP8.5, but deadwood amount increased (up to 142%). Intensive management increased volume growth (4-19%), timber yield (4-63%), carbon stocks (up to 14%) and deadwood amounts (up to 49%). Our results highlight that effects of climate severity and management intensity are site and species-specific for Eurasian’s boreal forests.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":\"114 21\",\"pages\":\"\"},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1139/cjfr-2023-0295\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1139/cjfr-2023-0295","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Effects of forest management intensity and climate change severity on volume growth, timber yield, carbon stocks, and the amount of deadwood in Scots pine, Norway spruce and silver birch stands in boreal conditions
We studied how management intensity and climate severity affect volume growth, timber yield, carbon stocks, and the amount of deadwood in Scots pine (Pinus sylvestris (L.), Norway spruce (Picea abies (L.) Karst.) and silver birch (Betula pendula Roth.) dominated stands in the Republic of Karelia and Arkhangelsk region of northwest Russia. Using the forest ecosystem model (SIMA) under different climates (current and representative concentration pathway scenarios, RCP4.5 and RCP8.5), no-thinning, low, medium, and high intensity thinning rotational forestry regimes were simulated. Under RCPs, the volume growth and timber yield (5-53%), carbon stocks (1-22%), and deadwood amounts (11-75%) increased for all Scots pine and silver birch stands. The use of low intensity management increased volume growth and carbon stocks (3-16%) and deadwood amount (up to 60%) under RCPs, but not timber yield (±3%) in these stands. For Norway spruce stands, the volume growth (5-26%), timber yield (23-75%), and carbon stocks (5-15%) decreased under RCP8.5, but deadwood amount increased (up to 142%). Intensive management increased volume growth (4-19%), timber yield (4-63%), carbon stocks (up to 14%) and deadwood amounts (up to 49%). Our results highlight that effects of climate severity and management intensity are site and species-specific for Eurasian’s boreal forests.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.