基于波分复用技术的长途大容量光通信系统中色散和非线性效应的最小化

Zahid Zaman, Yousaf Khan, Ammar Muhammad Khan
{"title":"基于波分复用技术的长途大容量光通信系统中色散和非线性效应的最小化","authors":"Zahid Zaman, Yousaf Khan, Ammar Muhammad Khan","doi":"10.1515/joc-2024-0086","DOIUrl":null,"url":null,"abstract":"\n Chromatic dispersion and nonlinear impairments pose challenges in high-capacity optical transmission systems, leading to signal distortions, channel interference and diminished the transmission performances. This paper explores the utilization of dispersion compensating fibers (DCF) using different schemes to mitigate the dispersion that accumulates along the length of a fiber in a 16 × 10 Gbps high-capacity long haul WDM system over a range of 500 km. When different wavelengths of light pulses are transmitted through an optical fiber, they experience varying speeds due to the refractive index’s wavelength dependency. As a result, the light pulses become temporally spread out as they travel through the fiber, and this dispersion persists throughout the fiber’s length. Considering non-linear effects such as self-phase modulation (SPM) and cross-phase modulation (XPM), this paper analyze and compare the three compensation schemes of DCF in a 16 channel WDM system. Moreover the impact of non-linearities based on fiber length are also analyzed and compared. The results are evaluated by comparing metrics such as Q-factor, bit error rate (BER) and eye height. The analysis concludes that the symmetrical compensation scheme of DCF outperforms the pre- and post-compensation scheme. This finding suggests that the symmetrical compensation method offers a promising solution for high-capacity access networks, providing high spectral efficiency, cost-effectiveness, and improved flexibility.","PeriodicalId":509395,"journal":{"name":"Journal of Optical Communications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Minimization of dispersion and non-linear effects in WDM based long-haul high capacity optical communication systems\",\"authors\":\"Zahid Zaman, Yousaf Khan, Ammar Muhammad Khan\",\"doi\":\"10.1515/joc-2024-0086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Chromatic dispersion and nonlinear impairments pose challenges in high-capacity optical transmission systems, leading to signal distortions, channel interference and diminished the transmission performances. This paper explores the utilization of dispersion compensating fibers (DCF) using different schemes to mitigate the dispersion that accumulates along the length of a fiber in a 16 × 10 Gbps high-capacity long haul WDM system over a range of 500 km. When different wavelengths of light pulses are transmitted through an optical fiber, they experience varying speeds due to the refractive index’s wavelength dependency. As a result, the light pulses become temporally spread out as they travel through the fiber, and this dispersion persists throughout the fiber’s length. Considering non-linear effects such as self-phase modulation (SPM) and cross-phase modulation (XPM), this paper analyze and compare the three compensation schemes of DCF in a 16 channel WDM system. Moreover the impact of non-linearities based on fiber length are also analyzed and compared. The results are evaluated by comparing metrics such as Q-factor, bit error rate (BER) and eye height. The analysis concludes that the symmetrical compensation scheme of DCF outperforms the pre- and post-compensation scheme. This finding suggests that the symmetrical compensation method offers a promising solution for high-capacity access networks, providing high spectral efficiency, cost-effectiveness, and improved flexibility.\",\"PeriodicalId\":509395,\"journal\":{\"name\":\"Journal of Optical Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Optical Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/joc-2024-0086\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optical Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/joc-2024-0086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

色散和非线性损伤给大容量光传输系统带来了挑战,导致信号失真、信道干扰和传输性能下降。本文探讨了如何利用色散补偿光纤(DCF),采用不同的方案来减轻光纤长度上累积的色散,该光纤用于 16 × 10 Gbps 大容量长距离波分复用系统,传输距离为 500 千米。当不同波长的光脉冲通过光纤传输时,由于折射率与波长有关,它们的速度会发生变化。因此,光脉冲在光纤中传输时会在时间上发生分散,这种分散现象会持续整个光纤长度。考虑到自相位调制(SPM)和跨相位调制(XPM)等非线性效应,本文分析并比较了 16 信道波分复用系统中 DCF 的三种补偿方案。此外,还分析和比较了基于光纤长度的非线性影响。结果通过比较 Q 因子、误码率 (BER) 和眼高等指标进行评估。分析得出的结论是,DCF 的对称补偿方案优于前后补偿方案。这一结果表明,对称补偿方法为大容量接入网络提供了一种前景广阔的解决方案,具有频谱效率高、成本效益高和灵活性强等优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Minimization of dispersion and non-linear effects in WDM based long-haul high capacity optical communication systems
Chromatic dispersion and nonlinear impairments pose challenges in high-capacity optical transmission systems, leading to signal distortions, channel interference and diminished the transmission performances. This paper explores the utilization of dispersion compensating fibers (DCF) using different schemes to mitigate the dispersion that accumulates along the length of a fiber in a 16 × 10 Gbps high-capacity long haul WDM system over a range of 500 km. When different wavelengths of light pulses are transmitted through an optical fiber, they experience varying speeds due to the refractive index’s wavelength dependency. As a result, the light pulses become temporally spread out as they travel through the fiber, and this dispersion persists throughout the fiber’s length. Considering non-linear effects such as self-phase modulation (SPM) and cross-phase modulation (XPM), this paper analyze and compare the three compensation schemes of DCF in a 16 channel WDM system. Moreover the impact of non-linearities based on fiber length are also analyzed and compared. The results are evaluated by comparing metrics such as Q-factor, bit error rate (BER) and eye height. The analysis concludes that the symmetrical compensation scheme of DCF outperforms the pre- and post-compensation scheme. This finding suggests that the symmetrical compensation method offers a promising solution for high-capacity access networks, providing high spectral efficiency, cost-effectiveness, and improved flexibility.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Management of lateral misalignment loss and total insertion loss with beam waist control in high contrast single mode coupling fibers Optimizing Fi-Wi network performance through advanced multiplexing techniques: a comparative analysis for enhanced quality metrics Simulation design for Ro-FSO communications system by digital modulation schemes Enabling ultra-high bit rate transmission with CFBG as dispersion compensator in an OptiSpan 240 km DWDM network Various graded index plastic optical fiber performance signature capability with the optimum dispersion control for indoor coverage applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1