用于建筑节能的三波段电致变色智能窗

IF 25.7 1区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Nature Sustainability Pub Date : 2024-05-14 DOI:10.1038/s41893-024-01349-z
Zewei Shao, Aibin Huang, Cuicui Cao, Xiaowei Ji, Wei Hu, Hongjie Luo, John Bell, Ping Jin, Ronggui Yang, Xun Cao
{"title":"用于建筑节能的三波段电致变色智能窗","authors":"Zewei Shao, Aibin Huang, Cuicui Cao, Xiaowei Ji, Wei Hu, Hongjie Luo, John Bell, Ping Jin, Ronggui Yang, Xun Cao","doi":"10.1038/s41893-024-01349-z","DOIUrl":null,"url":null,"abstract":"Electrochromic windows provide a sustainable solution for use in energy-efficient buildings as their varying optical properties in changing weather conditions allow the optimization of solar radiation heat gain and indoor thermal comfort. However, as the wavelength range of sunlight that can be used remains limited, broader implementation of this technology is hampered. Here we present an electrochromic design that combines radiative cooling of mid-infrared light and maximized utilization of both visible and near-infrared light. Our electrochromic window takes advantage of a WO3/VO2 film structure that, with a controllable lithium-ion intercalation depth, affords three active optical states to control visible and near-infrared transmittance independently. Moreover, the use of electrodes with preferred emissivity at both surfaces serves to optimize the radiative heat exchange between the indoor and outdoor environments. Field experiments and simulations show that our device exhibits higher energy savings than a commercial low-emissivity glass in most climate zones around the world. Our findings suggest ample opportunities for energy-saving window designs that can help achieve global carbon neutrality and sustainability. Buildings account for a large proportion of the global energy consumption. Here the electrochromic smart window realizes year-round energy savings by managing visible, near-infrared and mid-infrared light.","PeriodicalId":19056,"journal":{"name":"Nature Sustainability","volume":null,"pages":null},"PeriodicalIF":25.7000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tri-band electrochromic smart window for energy savings in buildings\",\"authors\":\"Zewei Shao, Aibin Huang, Cuicui Cao, Xiaowei Ji, Wei Hu, Hongjie Luo, John Bell, Ping Jin, Ronggui Yang, Xun Cao\",\"doi\":\"10.1038/s41893-024-01349-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electrochromic windows provide a sustainable solution for use in energy-efficient buildings as their varying optical properties in changing weather conditions allow the optimization of solar radiation heat gain and indoor thermal comfort. However, as the wavelength range of sunlight that can be used remains limited, broader implementation of this technology is hampered. Here we present an electrochromic design that combines radiative cooling of mid-infrared light and maximized utilization of both visible and near-infrared light. Our electrochromic window takes advantage of a WO3/VO2 film structure that, with a controllable lithium-ion intercalation depth, affords three active optical states to control visible and near-infrared transmittance independently. Moreover, the use of electrodes with preferred emissivity at both surfaces serves to optimize the radiative heat exchange between the indoor and outdoor environments. Field experiments and simulations show that our device exhibits higher energy savings than a commercial low-emissivity glass in most climate zones around the world. Our findings suggest ample opportunities for energy-saving window designs that can help achieve global carbon neutrality and sustainability. Buildings account for a large proportion of the global energy consumption. Here the electrochromic smart window realizes year-round energy savings by managing visible, near-infrared and mid-infrared light.\",\"PeriodicalId\":19056,\"journal\":{\"name\":\"Nature Sustainability\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":25.7000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Sustainability\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.nature.com/articles/s41893-024-01349-z\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Sustainability","FirstCategoryId":"93","ListUrlMain":"https://www.nature.com/articles/s41893-024-01349-z","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

电致变色窗为节能建筑提供了一种可持续发展的解决方案,因为它在不断变化的天气条件下具有不同的光学特性,可以优化太阳辐射热获得和室内热舒适度。然而,由于可利用的太阳光波长范围仍然有限,这项技术的广泛应用受到了阻碍。在这里,我们介绍一种电致变色设计,它结合了对中红外光的辐射冷却以及对可见光和近红外光的最大化利用。我们的电致变色窗口利用了 WO3/VO2 薄膜结构,通过可控的锂离子插层深度,提供了三种活性光学状态,可独立控制可见光和近红外线的透过率。此外,在两个表面使用具有优先发射率的电极可优化室内和室外环境之间的辐射热交换。现场实验和模拟显示,在全球大多数气候区,我们的设备比商用低辐射玻璃更节能。我们的研究结果为节能窗设计提供了大量机会,有助于实现全球碳中和与可持续发展。建筑物在全球能源消耗中占很大比例。在这里,电致变色智能窗通过管理可见光、近红外线和中红外线,实现全年节能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tri-band electrochromic smart window for energy savings in buildings
Electrochromic windows provide a sustainable solution for use in energy-efficient buildings as their varying optical properties in changing weather conditions allow the optimization of solar radiation heat gain and indoor thermal comfort. However, as the wavelength range of sunlight that can be used remains limited, broader implementation of this technology is hampered. Here we present an electrochromic design that combines radiative cooling of mid-infrared light and maximized utilization of both visible and near-infrared light. Our electrochromic window takes advantage of a WO3/VO2 film structure that, with a controllable lithium-ion intercalation depth, affords three active optical states to control visible and near-infrared transmittance independently. Moreover, the use of electrodes with preferred emissivity at both surfaces serves to optimize the radiative heat exchange between the indoor and outdoor environments. Field experiments and simulations show that our device exhibits higher energy savings than a commercial low-emissivity glass in most climate zones around the world. Our findings suggest ample opportunities for energy-saving window designs that can help achieve global carbon neutrality and sustainability. Buildings account for a large proportion of the global energy consumption. Here the electrochromic smart window realizes year-round energy savings by managing visible, near-infrared and mid-infrared light.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Sustainability
Nature Sustainability Energy-Renewable Energy, Sustainability and the Environment
CiteScore
41.90
自引率
1.10%
发文量
159
期刊介绍: Nature Sustainability aims to facilitate cross-disciplinary dialogues and bring together research fields that contribute to understanding how we organize our lives in a finite world and the impacts of our actions. Nature Sustainability will not only publish fundamental research but also significant investigations into policies and solutions for ensuring human well-being now and in the future.Its ultimate goal is to address the greatest challenges of our time.
期刊最新文献
Delta sustainability from the Holocene to the Anthropocene and envisioning the future The ‘Pact for the Future’ Ecological zoning for climate policy and global change studies A new approach to ecological zoning of the Earth in a changing climate Air-stable naphthalene derivative-based electrolytes for sustainable aqueous flow batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1