灵活波长路由网络中基于 DSP 的信道间干扰监测

IF 4 2区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Journal of Optical Communications and Networking Pub Date : 2024-06-03 DOI:10.1364/JOCN.523440
Leonardo Minelli;Gabriella Bosco;Stefano Straullu;Antonino Nespola;Stefano Piciaccia;Dario Pilori
{"title":"灵活波长路由网络中基于 DSP 的信道间干扰监测","authors":"Leonardo Minelli;Gabriella Bosco;Stefano Straullu;Antonino Nespola;Stefano Piciaccia;Dario Pilori","doi":"10.1364/JOCN.523440","DOIUrl":null,"url":null,"abstract":"The efficiency of optical networks employing flexible wavelength division multiplexing (WDM) can be increased by maximizing the throughput of each individual channel, provided that the position of its neighboring channel is known with sufficient accuracy in order to avoid inter-channel interference. In this paper, we propose a digital signal processing (DSP) algorithm, leveraging the use of an artificial neural network (ANN), to estimate the neighboring channels’ distance by processing raw digital samples from a standard coherent receiver. We present an efficient dataset design approach, based on Latin hypercube sampling (LHS), in order to effectively optimize and validate the algorithm under different assumptions on the optical WDM channels. We investigate the accuracy of the ANN-based DSP scheme through simulation analysis, highlighting its potential in relation to the characteristics of the optical network. Finally, we validate our approach in an experimental setup using standard commercial coherent transceivers. The experimental results show that the distance from the neighboring WDM channels can be estimated with a root mean square error of less than 1.5 GHz for a channel under test with a symbol rate of 52 GBaud.","PeriodicalId":50103,"journal":{"name":"Journal of Optical Communications and Networking","volume":"16 6","pages":"695-705"},"PeriodicalIF":4.0000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DSP-based inter-channel interference monitoring in flexible wavelength-routed networks\",\"authors\":\"Leonardo Minelli;Gabriella Bosco;Stefano Straullu;Antonino Nespola;Stefano Piciaccia;Dario Pilori\",\"doi\":\"10.1364/JOCN.523440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The efficiency of optical networks employing flexible wavelength division multiplexing (WDM) can be increased by maximizing the throughput of each individual channel, provided that the position of its neighboring channel is known with sufficient accuracy in order to avoid inter-channel interference. In this paper, we propose a digital signal processing (DSP) algorithm, leveraging the use of an artificial neural network (ANN), to estimate the neighboring channels’ distance by processing raw digital samples from a standard coherent receiver. We present an efficient dataset design approach, based on Latin hypercube sampling (LHS), in order to effectively optimize and validate the algorithm under different assumptions on the optical WDM channels. We investigate the accuracy of the ANN-based DSP scheme through simulation analysis, highlighting its potential in relation to the characteristics of the optical network. Finally, we validate our approach in an experimental setup using standard commercial coherent transceivers. The experimental results show that the distance from the neighboring WDM channels can be estimated with a root mean square error of less than 1.5 GHz for a channel under test with a symbol rate of 52 GBaud.\",\"PeriodicalId\":50103,\"journal\":{\"name\":\"Journal of Optical Communications and Networking\",\"volume\":\"16 6\",\"pages\":\"695-705\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Optical Communications and Networking\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10546897/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optical Communications and Networking","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10546897/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

采用灵活波分复用(WDM)技术的光网络可以通过最大限度地提高单个信道的吞吐量来提高效率,但前提是必须足够准确地知道相邻信道的位置,以避免信道间干扰。在本文中,我们提出了一种数字信号处理(DSP)算法,利用人工神经网络(ANN),通过处理来自标准相干接收器的原始数字样本来估计相邻信道的距离。我们提出了一种基于拉丁超立方采样(LHS)的高效数据集设计方法,以便在光波分复用信道的不同假设条件下有效优化和验证算法。我们通过仿真分析研究了基于 ANN 的 DSP 方案的准确性,强调了其与光网络特性相关的潜力。最后,我们在使用标准商用相干收发器的实验装置中验证了我们的方法。实验结果表明,对于符号率为 52 GBaud 的被测信道,相邻波分复用信道的距离估计均方根误差小于 1.5 GHz。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DSP-based inter-channel interference monitoring in flexible wavelength-routed networks
The efficiency of optical networks employing flexible wavelength division multiplexing (WDM) can be increased by maximizing the throughput of each individual channel, provided that the position of its neighboring channel is known with sufficient accuracy in order to avoid inter-channel interference. In this paper, we propose a digital signal processing (DSP) algorithm, leveraging the use of an artificial neural network (ANN), to estimate the neighboring channels’ distance by processing raw digital samples from a standard coherent receiver. We present an efficient dataset design approach, based on Latin hypercube sampling (LHS), in order to effectively optimize and validate the algorithm under different assumptions on the optical WDM channels. We investigate the accuracy of the ANN-based DSP scheme through simulation analysis, highlighting its potential in relation to the characteristics of the optical network. Finally, we validate our approach in an experimental setup using standard commercial coherent transceivers. The experimental results show that the distance from the neighboring WDM channels can be estimated with a root mean square error of less than 1.5 GHz for a channel under test with a symbol rate of 52 GBaud.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.40
自引率
16.00%
发文量
104
审稿时长
4 months
期刊介绍: The scope of the Journal includes advances in the state-of-the-art of optical networking science, technology, and engineering. Both theoretical contributions (including new techniques, concepts, analyses, and economic studies) and practical contributions (including optical networking experiments, prototypes, and new applications) are encouraged. Subareas of interest include the architecture and design of optical networks, optical network survivability and security, software-defined optical networking, elastic optical networks, data and control plane advances, network management related innovation, and optical access networks. Enabling technologies and their applications are suitable topics only if the results are shown to directly impact optical networking beyond simple point-to-point networks.
期刊最新文献
Introduction to the Benchmarking in Optical Networks Special Issue Protocol-aware approach for mitigating radiation-induced errors in free-space optical downlinks Security enhancement for NOMA-PON with 2D cellular automata and Turing pattern cascading scramble aided fixed-point extended logistic chaotic encryption In-network stable radix sorter using many FPGAs with high-bandwidth photonics [Invited] Power-consumption analysis for different IPoWDM network architectures with ZR/ZR+ and long-haul muxponders
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1