使用 Metglas/PZT-5B 传感器的相对低频磁场探测系统

Zhihao Jiang, Xiaoxu Liu, Zhejun Jin, Zhao Yao, Yuheng Wang, Shipeng Zhang, Quanming Gao, Shandong Li
{"title":"使用 Metglas/PZT-5B 传感器的相对低频磁场探测系统","authors":"Zhihao Jiang, Xiaoxu Liu, Zhejun Jin, Zhao Yao, Yuheng Wang, Shipeng Zhang, Quanming Gao, Shandong Li","doi":"10.1002/pssr.202400133","DOIUrl":null,"url":null,"abstract":"The magnetoelectric (ME) sensor, a new and promising type of magnetic field sensor with ultrahigh sensitivity. However, there are few reports on the research of real‐time measurement system which can promote its practical application. In this study, a novel real‐time measuring approach for weak AC magnetic fields at relatively low frequency was proposed using Metglas/PZT‐5B magnetoelectric sensors. The system mainly consists of an oscilloscope, a signal generator and a program developed with LabVIEW programming. Real‐time measurement of relatively low frequency magnetic fields have been achieved by using frequency up‐conversion methods,simultaneously display the frequency and magnitude of the magnetic field. As a result, the real‐time measurement system was able to detect a weak AC magnetic field as low as 0.1 nT@1Hz, which is promising to push the ME sensor to practical application.This article is protected by copyright. All rights reserved.","PeriodicalId":20059,"journal":{"name":"physica status solidi (RRL) – Rapid Research Letters","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Relatively Low Frequency Magnetic Field Detection System Using Metglas/PZT‐5B Sensor\",\"authors\":\"Zhihao Jiang, Xiaoxu Liu, Zhejun Jin, Zhao Yao, Yuheng Wang, Shipeng Zhang, Quanming Gao, Shandong Li\",\"doi\":\"10.1002/pssr.202400133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The magnetoelectric (ME) sensor, a new and promising type of magnetic field sensor with ultrahigh sensitivity. However, there are few reports on the research of real‐time measurement system which can promote its practical application. In this study, a novel real‐time measuring approach for weak AC magnetic fields at relatively low frequency was proposed using Metglas/PZT‐5B magnetoelectric sensors. The system mainly consists of an oscilloscope, a signal generator and a program developed with LabVIEW programming. Real‐time measurement of relatively low frequency magnetic fields have been achieved by using frequency up‐conversion methods,simultaneously display the frequency and magnitude of the magnetic field. As a result, the real‐time measurement system was able to detect a weak AC magnetic field as low as 0.1 nT@1Hz, which is promising to push the ME sensor to practical application.This article is protected by copyright. All rights reserved.\",\"PeriodicalId\":20059,\"journal\":{\"name\":\"physica status solidi (RRL) – Rapid Research Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"physica status solidi (RRL) – Rapid Research Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/pssr.202400133\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"physica status solidi (RRL) – Rapid Research Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/pssr.202400133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

磁电(ME)传感器是一种新型、有前途的磁场传感器,具有超高灵敏度。然而,有关实时测量系统的研究报道却很少,而这种研究却能促进其实际应用。本研究利用 Metglas/PZT-5B 磁电传感器,提出了一种新型的实时测量方法,用于测量频率相对较低的弱交流磁场。该系统主要由示波器、信号发生器和 LabVIEW 编程程序组成。利用频率上变频方法实现了相对低频磁场的实时测量,同时显示磁场的频率和幅值。因此,实时测量系统能够检测到低至 0.1 nT@1Hz 的微弱交流磁场,有望将 ME 传感器推向实际应用。本文受版权保护。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Relatively Low Frequency Magnetic Field Detection System Using Metglas/PZT‐5B Sensor
The magnetoelectric (ME) sensor, a new and promising type of magnetic field sensor with ultrahigh sensitivity. However, there are few reports on the research of real‐time measurement system which can promote its practical application. In this study, a novel real‐time measuring approach for weak AC magnetic fields at relatively low frequency was proposed using Metglas/PZT‐5B magnetoelectric sensors. The system mainly consists of an oscilloscope, a signal generator and a program developed with LabVIEW programming. Real‐time measurement of relatively low frequency magnetic fields have been achieved by using frequency up‐conversion methods,simultaneously display the frequency and magnitude of the magnetic field. As a result, the real‐time measurement system was able to detect a weak AC magnetic field as low as 0.1 nT@1Hz, which is promising to push the ME sensor to practical application.This article is protected by copyright. All rights reserved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
InGaN/GaN Hybrid‐Nanostructure Light Emitting Diodes with Emission Wavelength Green and Beyond TiO2‐Based Schottky Diodes as Bidirectional Switches for Bipolar Resistive Memories Electronic, transport and optical properties of potential transparent conductive material Rb2Pb2O3 Low‐threshold Amplified Spontaneous Emission of Dion‐Jacobson Phase Perovskite Films Achieved by Tuning Diamine Cation Size Characteristics of Vertical Transistors on a GaN Substrate Fabricated via Na‐flux Method and Enlargement of the Substrate Surpassing 6 Inches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1