基于地理信息系统生态指数的城市生态环境质量评估与模拟

IF 3.2 2区 环境科学与生态学 Q2 ENVIRONMENTAL STUDIES Land Pub Date : 2024-05-14 DOI:10.3390/land13050687
Lusheng Che, Shuyan Yin, Junfang Jin, Weijian Wu
{"title":"基于地理信息系统生态指数的城市生态环境质量评估与模拟","authors":"Lusheng Che, Shuyan Yin, Junfang Jin, Weijian Wu","doi":"10.3390/land13050687","DOIUrl":null,"url":null,"abstract":"The urban ecological environment is crucial to the quality of life of residents and the sustainable development of the region, and the assessment and prediction of the ecological environment quality can provide a scientific guidance for ecological environment management and improvement. We proposed a novel approach to assess and simulate the urban ecological environment quality using the Geographic Information System Ecological Index (GISEI). First, we calculated the remote sensing ecological index (RSEI) for Xi’an in 2020. Second, we selected land use data, mean annual temperature, and mean annual relative humidity as ecological indicators. We regressed these indicators on the RSEI to obtain the GISEI of Xi’an in 2020. Finally, we simulated the GISEI of Xi’an in 2030 by predicting the ecological indicators and analyzed the changes in the ecological environment quality. The results of the study show that the ecological environment quality in Xi’an in 2020 is better overall. By 2030, most of the ecological environment quality in Xi’an will be worse, and the proportion of the excellent area will decrease from 42.8% to 3.8%. The more serious ecological degradation is mainly located in the regions bordering the Qinling Mountains and the Guanzhong Plain, and the ecological environment quality in most areas of the Qinling Mountains will deteriorate from excellent to good.","PeriodicalId":37702,"journal":{"name":"Land","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment and Simulation of Urban Ecological Environment Quality Based on Geographic Information System Ecological Index\",\"authors\":\"Lusheng Che, Shuyan Yin, Junfang Jin, Weijian Wu\",\"doi\":\"10.3390/land13050687\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The urban ecological environment is crucial to the quality of life of residents and the sustainable development of the region, and the assessment and prediction of the ecological environment quality can provide a scientific guidance for ecological environment management and improvement. We proposed a novel approach to assess and simulate the urban ecological environment quality using the Geographic Information System Ecological Index (GISEI). First, we calculated the remote sensing ecological index (RSEI) for Xi’an in 2020. Second, we selected land use data, mean annual temperature, and mean annual relative humidity as ecological indicators. We regressed these indicators on the RSEI to obtain the GISEI of Xi’an in 2020. Finally, we simulated the GISEI of Xi’an in 2030 by predicting the ecological indicators and analyzed the changes in the ecological environment quality. The results of the study show that the ecological environment quality in Xi’an in 2020 is better overall. By 2030, most of the ecological environment quality in Xi’an will be worse, and the proportion of the excellent area will decrease from 42.8% to 3.8%. The more serious ecological degradation is mainly located in the regions bordering the Qinling Mountains and the Guanzhong Plain, and the ecological environment quality in most areas of the Qinling Mountains will deteriorate from excellent to good.\",\"PeriodicalId\":37702,\"journal\":{\"name\":\"Land\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Land\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.3390/land13050687\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL STUDIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Land","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/land13050687","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
引用次数: 0

摘要

城市生态环境对居民生活质量和区域可持续发展至关重要,对生态环境质量的评估和预测可为生态环境管理和改善提供科学指导。我们提出了一种利用地理信息系统生态指数(GISEI)评估和模拟城市生态环境质量的新方法。首先,我们计算了 2020 年西安市的遥感生态指数(RSEI)。其次,我们选择土地利用数据、年平均气温和年平均相对湿度作为生态指标。我们将这些指标与 RSEI 进行回归,得出 2020 年西安的 GISEI。最后,我们通过预测生态指标模拟了 2030 年西安市的 GISEI,并分析了生态环境质量的变化。研究结果表明,2020 年西安市生态环境质量总体较好。到 2030 年,西安市大部分地区生态环境质量将变差,优良区域比例将由 42.8%下降到 3.8%。生态环境恶化较为严重的地区主要分布在秦岭与关中平原接壤地区,秦岭大部分地区生态环境质量将由优变为良。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Assessment and Simulation of Urban Ecological Environment Quality Based on Geographic Information System Ecological Index
The urban ecological environment is crucial to the quality of life of residents and the sustainable development of the region, and the assessment and prediction of the ecological environment quality can provide a scientific guidance for ecological environment management and improvement. We proposed a novel approach to assess and simulate the urban ecological environment quality using the Geographic Information System Ecological Index (GISEI). First, we calculated the remote sensing ecological index (RSEI) for Xi’an in 2020. Second, we selected land use data, mean annual temperature, and mean annual relative humidity as ecological indicators. We regressed these indicators on the RSEI to obtain the GISEI of Xi’an in 2020. Finally, we simulated the GISEI of Xi’an in 2030 by predicting the ecological indicators and analyzed the changes in the ecological environment quality. The results of the study show that the ecological environment quality in Xi’an in 2020 is better overall. By 2030, most of the ecological environment quality in Xi’an will be worse, and the proportion of the excellent area will decrease from 42.8% to 3.8%. The more serious ecological degradation is mainly located in the regions bordering the Qinling Mountains and the Guanzhong Plain, and the ecological environment quality in most areas of the Qinling Mountains will deteriorate from excellent to good.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Land
Land ENVIRONMENTAL STUDIES-Nature and Landscape Conservation
CiteScore
4.90
自引率
23.10%
发文量
1927
期刊介绍: Land is an international and cross-disciplinary, peer-reviewed, open access journal of land system science, landscape, soil–sediment–water systems, urban study, land–climate interactions, water–energy–land–food (WELF) nexus, biodiversity research and health nexus, land modelling and data processing, ecosystem services, and multifunctionality and sustainability etc., published monthly online by MDPI. The International Association for Landscape Ecology (IALE), European Land-use Institute (ELI), and Landscape Institute (LI) are affiliated with Land, and their members receive a discount on the article processing charge.
期刊最新文献
The Identification of Historic Plant Landscape Characteristics and Conservation Strategies for Longevity Hill Based on the WSL Monoplotting Tool Towards Uncovering Three Decades of LULC in the Brazilian Drylands: Caatinga Biome Dynamics (1985–2019) Optimizing Spatial Distribution of Retail Shops against Neighborhood Tree Canopy Shade Using Big Data Extracted from Streetscape Spatial Characteristics of Brownfield Clusters and “City-Brown” Patterns: Case Studies of Resource-Exhausted Cities in China A New Framework of Land Use Simulation for Land Use Benefit Optimization Based on GMOP-PLUS Model—A Case Study of Haikou
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1