在网络数据传输带宽受限的情况下对摄像机视频流进行自适应处理

M. S. Nikolyukin, A. D. Obukhov
{"title":"在网络数据传输带宽受限的情况下对摄像机视频流进行自适应处理","authors":"M. S. Nikolyukin, A. D. Obukhov","doi":"10.17587/it.30.252-260","DOIUrl":null,"url":null,"abstract":"Video surveillance systems, cameras, and video stream processing are actively used in many enterprises as a monitoring and control tool for regular and emergency situations, as well as staff activities. The application of intelligent algorithms allows tracking and minimizing operator errors, but these approaches are highly sensitive to the quality of the original video, presence of noise, and low resolution. On the other hand, such video surveillance systems may be limited by network bandwidth. Therefore, this work considers an adaptive video stream processing algorithm that ensures efficient operation of computer vision and object recognition methods while minimizing the amount of transmitted information within network bandwidth constraints. The proposed algorithm addresses the task of determining boundary conditions that ensure the functionality of object recognition algorithms with the least amount of video stream. Corresponding experimental studies were conducted to determine the minimum values of frame resolution and video bitrate. The algorithm was tested in organizing video surveillance at warehouse complexes. The obtained results can be used in developing decision support systems for enterprises in various industries requiring intelligent processing of large volumes of data.","PeriodicalId":504905,"journal":{"name":"Informacionnye Tehnologii","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive Processing of Camera Video Stream with Limitations on the Network Data Transmission Bandwidth\",\"authors\":\"M. S. Nikolyukin, A. D. Obukhov\",\"doi\":\"10.17587/it.30.252-260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Video surveillance systems, cameras, and video stream processing are actively used in many enterprises as a monitoring and control tool for regular and emergency situations, as well as staff activities. The application of intelligent algorithms allows tracking and minimizing operator errors, but these approaches are highly sensitive to the quality of the original video, presence of noise, and low resolution. On the other hand, such video surveillance systems may be limited by network bandwidth. Therefore, this work considers an adaptive video stream processing algorithm that ensures efficient operation of computer vision and object recognition methods while minimizing the amount of transmitted information within network bandwidth constraints. The proposed algorithm addresses the task of determining boundary conditions that ensure the functionality of object recognition algorithms with the least amount of video stream. Corresponding experimental studies were conducted to determine the minimum values of frame resolution and video bitrate. The algorithm was tested in organizing video surveillance at warehouse complexes. The obtained results can be used in developing decision support systems for enterprises in various industries requiring intelligent processing of large volumes of data.\",\"PeriodicalId\":504905,\"journal\":{\"name\":\"Informacionnye Tehnologii\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Informacionnye Tehnologii\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17587/it.30.252-260\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informacionnye Tehnologii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17587/it.30.252-260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

许多企业都在积极使用视频监控系统、摄像机和视频流处理,将其作为常规和紧急情况以及员工活动的监控工具。智能算法的应用可以跟踪和尽量减少操作员的失误,但这些方法对原始视频的质量、噪音的存在和低分辨率非常敏感。另一方面,此类视频监控系统可能会受到网络带宽的限制。因此,这项工作考虑采用一种自适应视频流处理算法,确保计算机视觉和物体识别方法的高效运行,同时在网络带宽限制下尽量减少传输的信息量。所提出的算法要解决的任务是确定边界条件,确保用最少的视频流实现物体识别算法的功能。为确定帧分辨率和视频比特率的最小值,进行了相应的实验研究。该算法在组织仓库视频监控时进行了测试。获得的结果可用于为需要智能处理大量数据的各行业企业开发决策支持系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adaptive Processing of Camera Video Stream with Limitations on the Network Data Transmission Bandwidth
Video surveillance systems, cameras, and video stream processing are actively used in many enterprises as a monitoring and control tool for regular and emergency situations, as well as staff activities. The application of intelligent algorithms allows tracking and minimizing operator errors, but these approaches are highly sensitive to the quality of the original video, presence of noise, and low resolution. On the other hand, such video surveillance systems may be limited by network bandwidth. Therefore, this work considers an adaptive video stream processing algorithm that ensures efficient operation of computer vision and object recognition methods while minimizing the amount of transmitted information within network bandwidth constraints. The proposed algorithm addresses the task of determining boundary conditions that ensure the functionality of object recognition algorithms with the least amount of video stream. Corresponding experimental studies were conducted to determine the minimum values of frame resolution and video bitrate. The algorithm was tested in organizing video surveillance at warehouse complexes. The obtained results can be used in developing decision support systems for enterprises in various industries requiring intelligent processing of large volumes of data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analytic Hierarchy Process in Diagnostics of Diseases Modified Evolutionary Algorithm Mole-Rat with an Adaptive Mechanism for Dynamic Obstacle Avoidance in Emergency Situations Models of Interest, Difficulty, and Perceived Usefulness of the Gaming Chatbot with Wordle Like Puzzles for Learning Programming Investigation Neural Network Models for Wind Speed Prediction Based on Meteorological Observations in Northern Dagestan Method of Remote Photoplethysmography Robust to Interference in Video Registration of Human Facial Skin
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1