{"title":"地外样品中熔融包裹体的非破坏性定量分析:通过纳米级 X 射线计算机断层扫描进行的恰西格尼岩案例研究","authors":"Peiyu Wu, Kyle Dayton, Esteban Gazel, Teresa Porri","doi":"10.1111/maps.14180","DOIUrl":null,"url":null,"abstract":"<p>Estimation of the composition of planetary rocks and minerals is crucial for understanding their formation processes. In this study, we present the application of X-ray nano-computed tomography (nano-XCT) for non-destructive three-dimensional (3-D) phase analysis and estimation of phase abundances in rare Martian meteorite samples, specifically chassignite Northwest Africa (NWA) 2737. We determined the most suitable laser power for minimizing artifacts and maximizing phase contrast. By utilizing nano-XCT, we successfully identified and segmented primary phases in the bulk meteorite sample. Additionally, we were able to locate and segment crystallized silicate melt inclusions within the meteorite. The phase abundances in bulk NWA 2737 and within melt inclusions calculated using nano-XCT were in good agreement with previous studies that used thin section calculations, demonstrating the reliability of nano-XCT as a non-destructive alternative for estimating bulk phase abundances in rare samples. This study develops a benchmarking protocol and demonstrates the efficacy of nano-XCT as a non-destructive technique for generating an overview of phase distribution and assemblages of melt inclusions within rare samples. Future research can benefit from combining non-destructive 3-D phase assemblage estimations with non-destructive 3-D chemical analysis techniques to achieve a fully non-destructive parental magma composition estimation of rare cumulate samples.</p>","PeriodicalId":18555,"journal":{"name":"Meteoritics & Planetary Science","volume":"59 7","pages":"1723-1741"},"PeriodicalIF":2.2000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-destructive quantitative analysis of melt inclusions in extraterrestrial samples: Case study of chassignite via nanoscale X-ray computed tomography\",\"authors\":\"Peiyu Wu, Kyle Dayton, Esteban Gazel, Teresa Porri\",\"doi\":\"10.1111/maps.14180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Estimation of the composition of planetary rocks and minerals is crucial for understanding their formation processes. In this study, we present the application of X-ray nano-computed tomography (nano-XCT) for non-destructive three-dimensional (3-D) phase analysis and estimation of phase abundances in rare Martian meteorite samples, specifically chassignite Northwest Africa (NWA) 2737. We determined the most suitable laser power for minimizing artifacts and maximizing phase contrast. By utilizing nano-XCT, we successfully identified and segmented primary phases in the bulk meteorite sample. Additionally, we were able to locate and segment crystallized silicate melt inclusions within the meteorite. The phase abundances in bulk NWA 2737 and within melt inclusions calculated using nano-XCT were in good agreement with previous studies that used thin section calculations, demonstrating the reliability of nano-XCT as a non-destructive alternative for estimating bulk phase abundances in rare samples. This study develops a benchmarking protocol and demonstrates the efficacy of nano-XCT as a non-destructive technique for generating an overview of phase distribution and assemblages of melt inclusions within rare samples. Future research can benefit from combining non-destructive 3-D phase assemblage estimations with non-destructive 3-D chemical analysis techniques to achieve a fully non-destructive parental magma composition estimation of rare cumulate samples.</p>\",\"PeriodicalId\":18555,\"journal\":{\"name\":\"Meteoritics & Planetary Science\",\"volume\":\"59 7\",\"pages\":\"1723-1741\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Meteoritics & Planetary Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/maps.14180\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meteoritics & Planetary Science","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/maps.14180","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Non-destructive quantitative analysis of melt inclusions in extraterrestrial samples: Case study of chassignite via nanoscale X-ray computed tomography
Estimation of the composition of planetary rocks and minerals is crucial for understanding their formation processes. In this study, we present the application of X-ray nano-computed tomography (nano-XCT) for non-destructive three-dimensional (3-D) phase analysis and estimation of phase abundances in rare Martian meteorite samples, specifically chassignite Northwest Africa (NWA) 2737. We determined the most suitable laser power for minimizing artifacts and maximizing phase contrast. By utilizing nano-XCT, we successfully identified and segmented primary phases in the bulk meteorite sample. Additionally, we were able to locate and segment crystallized silicate melt inclusions within the meteorite. The phase abundances in bulk NWA 2737 and within melt inclusions calculated using nano-XCT were in good agreement with previous studies that used thin section calculations, demonstrating the reliability of nano-XCT as a non-destructive alternative for estimating bulk phase abundances in rare samples. This study develops a benchmarking protocol and demonstrates the efficacy of nano-XCT as a non-destructive technique for generating an overview of phase distribution and assemblages of melt inclusions within rare samples. Future research can benefit from combining non-destructive 3-D phase assemblage estimations with non-destructive 3-D chemical analysis techniques to achieve a fully non-destructive parental magma composition estimation of rare cumulate samples.
期刊介绍:
First issued in 1953, the journal publishes research articles describing the latest results of new studies, invited reviews of major topics in planetary science, editorials on issues of current interest in the field, and book reviews. The publications are original, not considered for publication elsewhere, and undergo peer-review. The topics include the origin and history of the solar system, planets and natural satellites, interplanetary dust and interstellar medium, lunar samples, meteors, and meteorites, asteroids, comets, craters, and tektites. Our authors and editors are professional scientists representing numerous disciplines, including astronomy, astrophysics, physics, geophysics, chemistry, isotope geochemistry, mineralogy, earth science, geology, and biology. MAPS has subscribers in over 40 countries. Fifty percent of MAPS'' readers are based outside the USA. The journal is available in hard copy and online.