{"title":"利用混合数据建立相对于海面的海底模型的可能性和质量评估","authors":"Idzikowska Magdalena, Pająk Katarzyna, Kowalczyk Kamil","doi":"10.1111/tgis.13178","DOIUrl":null,"url":null,"abstract":"The development of reliable seafloor topography models is a complex, multi‐track process, which is due to the diversity of available sets of data, their resolution, acquisition methods, complex seafloor forms, and the multitude of interpolation techniques. This article is aimed at assessing the suitability of different algorithms for seafloor modelling based on hybrid datasets (multi‐beam soundings and raster GEBCO models). The study involves the selection of optimum solutions as well as a comparative analysis of sea level change trends based on altimetric data. The study area relates to four forms of seafloor topography, namely the oceanic trench, the submarine canyon, the seamount region, and the undulating areas. The most reliable models were built by interpolating by the Kriging methods at a 0.01‐degree grid spacing. The smallest residues and the greatest correlation are found between models generated from all available sounding datasets. Raster GEBCO models can be an alternative in the additional model densification. The results show the following relationships: the greater the variation in the topography, the greater the divergence in the values of the sea level change trends. As for seamounts, hills, and folds, when the terrain rises rapidly, the trend values also increase and then decrease during the decline. Seafloor structure mapping enables the search for relationships between the seafloor topography and the changes occurring at the water surface.","PeriodicalId":47842,"journal":{"name":"Transactions in GIS","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Possibility and quality assessment in seafloor modeling relative to the sea surface using hybrid data\",\"authors\":\"Idzikowska Magdalena, Pająk Katarzyna, Kowalczyk Kamil\",\"doi\":\"10.1111/tgis.13178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The development of reliable seafloor topography models is a complex, multi‐track process, which is due to the diversity of available sets of data, their resolution, acquisition methods, complex seafloor forms, and the multitude of interpolation techniques. This article is aimed at assessing the suitability of different algorithms for seafloor modelling based on hybrid datasets (multi‐beam soundings and raster GEBCO models). The study involves the selection of optimum solutions as well as a comparative analysis of sea level change trends based on altimetric data. The study area relates to four forms of seafloor topography, namely the oceanic trench, the submarine canyon, the seamount region, and the undulating areas. The most reliable models were built by interpolating by the Kriging methods at a 0.01‐degree grid spacing. The smallest residues and the greatest correlation are found between models generated from all available sounding datasets. Raster GEBCO models can be an alternative in the additional model densification. The results show the following relationships: the greater the variation in the topography, the greater the divergence in the values of the sea level change trends. As for seamounts, hills, and folds, when the terrain rises rapidly, the trend values also increase and then decrease during the decline. Seafloor structure mapping enables the search for relationships between the seafloor topography and the changes occurring at the water surface.\",\"PeriodicalId\":47842,\"journal\":{\"name\":\"Transactions in GIS\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions in GIS\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1111/tgis.13178\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions in GIS","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1111/tgis.13178","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY","Score":null,"Total":0}
Possibility and quality assessment in seafloor modeling relative to the sea surface using hybrid data
The development of reliable seafloor topography models is a complex, multi‐track process, which is due to the diversity of available sets of data, their resolution, acquisition methods, complex seafloor forms, and the multitude of interpolation techniques. This article is aimed at assessing the suitability of different algorithms for seafloor modelling based on hybrid datasets (multi‐beam soundings and raster GEBCO models). The study involves the selection of optimum solutions as well as a comparative analysis of sea level change trends based on altimetric data. The study area relates to four forms of seafloor topography, namely the oceanic trench, the submarine canyon, the seamount region, and the undulating areas. The most reliable models were built by interpolating by the Kriging methods at a 0.01‐degree grid spacing. The smallest residues and the greatest correlation are found between models generated from all available sounding datasets. Raster GEBCO models can be an alternative in the additional model densification. The results show the following relationships: the greater the variation in the topography, the greater the divergence in the values of the sea level change trends. As for seamounts, hills, and folds, when the terrain rises rapidly, the trend values also increase and then decrease during the decline. Seafloor structure mapping enables the search for relationships between the seafloor topography and the changes occurring at the water surface.
期刊介绍:
Transactions in GIS is an international journal which provides a forum for high quality, original research articles, review articles, short notes and book reviews that focus on: - practical and theoretical issues influencing the development of GIS - the collection, analysis, modelling, interpretation and display of spatial data within GIS - the connections between GIS and related technologies - new GIS applications which help to solve problems affecting the natural or built environments, or business