调整数学模型超参数的组合方法

{"title":"调整数学模型超参数的组合方法","authors":"","doi":"10.18469/ikt.2023.21.3.08","DOIUrl":null,"url":null,"abstract":"Automation of data processing processes is an important direction in the field of information technology. The main focus of researchers is usually on training intelligent systems. One of the key aspects of this process is the selection of hyperparameters for models. This research paper analyzes a combined method for tuning hyperparameters in a classification mathematical model. The method integrates the functionalities of two well-established approaches: exhaustive search and limited search. Initially, the first approach is employed to discover a preliminary estimation of the model’s quality metric’s maximum value. Subsequently, the second approach is utilized to generate a final estimation of achievable quality and compile a list of hyperparameter value combinations that optimize the classifier’s efficiency. To verify the validity of the method, custom software was developed using the stochastic gradient descent algorithm. The results obtained from the experiment demonstrate the effectiveness of the proposed method.","PeriodicalId":508406,"journal":{"name":"Infokommunikacionnye tehnologii","volume":"113 18","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"COMBINED METHOD FOR TUNING HYPERPARAMETERS OF A MATHEMATICAL MODEL\",\"authors\":\"\",\"doi\":\"10.18469/ikt.2023.21.3.08\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automation of data processing processes is an important direction in the field of information technology. The main focus of researchers is usually on training intelligent systems. One of the key aspects of this process is the selection of hyperparameters for models. This research paper analyzes a combined method for tuning hyperparameters in a classification mathematical model. The method integrates the functionalities of two well-established approaches: exhaustive search and limited search. Initially, the first approach is employed to discover a preliminary estimation of the model’s quality metric’s maximum value. Subsequently, the second approach is utilized to generate a final estimation of achievable quality and compile a list of hyperparameter value combinations that optimize the classifier’s efficiency. To verify the validity of the method, custom software was developed using the stochastic gradient descent algorithm. The results obtained from the experiment demonstrate the effectiveness of the proposed method.\",\"PeriodicalId\":508406,\"journal\":{\"name\":\"Infokommunikacionnye tehnologii\",\"volume\":\"113 18\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Infokommunikacionnye tehnologii\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18469/ikt.2023.21.3.08\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infokommunikacionnye tehnologii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18469/ikt.2023.21.3.08","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

数据处理过程自动化是信息技术领域的一个重要方向。研究人员的主要关注点通常是训练智能系统。这一过程的关键环节之一是选择模型的超参数。本研究论文分析了一种在分类数学模型中调整超参数的组合方法。该方法整合了两种成熟方法的功能:穷举搜索和有限搜索。首先,第一种方法用于发现模型质量指标最大值的初步估计值。随后,利用第二种方法对可实现的质量进行最终估算,并编制一份优化分类器效率的超参数值组合列表。为了验证该方法的有效性,我们使用随机梯度下降算法开发了定制软件。实验结果证明了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
COMBINED METHOD FOR TUNING HYPERPARAMETERS OF A MATHEMATICAL MODEL
Automation of data processing processes is an important direction in the field of information technology. The main focus of researchers is usually on training intelligent systems. One of the key aspects of this process is the selection of hyperparameters for models. This research paper analyzes a combined method for tuning hyperparameters in a classification mathematical model. The method integrates the functionalities of two well-established approaches: exhaustive search and limited search. Initially, the first approach is employed to discover a preliminary estimation of the model’s quality metric’s maximum value. Subsequently, the second approach is utilized to generate a final estimation of achievable quality and compile a list of hyperparameter value combinations that optimize the classifier’s efficiency. To verify the validity of the method, custom software was developed using the stochastic gradient descent algorithm. The results obtained from the experiment demonstrate the effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CONCEPT OF APPLICATION OF CONTROL ALGORITHMS FOR MANIPULATION ROBOTS TO PERFORM COMPLEX TECHNOLOGICAL OPERATIONS IN INDUSTRY OPTIMIZATION OF MODE PROPAGATION FOR AN EMBEDIER OF OPTICALVORTEX BEAMS BASED ON A MICRO-RING RESONATOR RECOMMENDATIONS ON THE URBAN NETWORK FOTL STRUCTURE WITH THE LOWEST POSSIBLE LEVEL OF DISTORTION OF INFORMATION AND CONTROL ILCF-SIGNALS STRUCTURE FEATURES OF MINIMUM FREQUENCY SHIFT KEYING SIGNAL MODEMS TRAFFIC ANOMALY DETECTION IN VEHICLE BUS BY RECURRENT LSTM NEURAL NETWORK
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1