{"title":"通过 DEM 驱动的校正技术实现机载高光谱图像的高效几何校正工作流程","authors":"Junchuan Yu, Yichuan Li, Daqing Ge, Yangyang Chen, Qiong Wu, Yanni Ma","doi":"10.5194/isprs-archives-xlviii-1-2024-831-2024","DOIUrl":null,"url":null,"abstract":"Abstract. Geometric correction, a pivotal step in the preprocessing of airborne remote sensing imagery, is critical for ensuring the accuracy of subsequent quantitative analyses. Achieving precise and efficient geometric correction for airborne hyperspectral data remains a significant challenge in the field. This study presents a new method for system-level and fine-scale geometric correction of uncontrolled airborne images utilizing DEM data, which integrates forward and inverse transformation algorithms. Furthermore, an optimized workflow is proposed to facilitate the processing of large-scale hyperspectral datasets. The effectiveness of the proposed method is demonstrated through an application analysis using airborne HyMap imagery, with experimental outcomes indicating high application accuracy and enhanced processing efficiency.\n","PeriodicalId":505918,"journal":{"name":"The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences","volume":" May","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Geometric Correction Workflow for Airborne Hyperspectral Images through DEM-Driven Correction Techniques\",\"authors\":\"Junchuan Yu, Yichuan Li, Daqing Ge, Yangyang Chen, Qiong Wu, Yanni Ma\",\"doi\":\"10.5194/isprs-archives-xlviii-1-2024-831-2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Geometric correction, a pivotal step in the preprocessing of airborne remote sensing imagery, is critical for ensuring the accuracy of subsequent quantitative analyses. Achieving precise and efficient geometric correction for airborne hyperspectral data remains a significant challenge in the field. This study presents a new method for system-level and fine-scale geometric correction of uncontrolled airborne images utilizing DEM data, which integrates forward and inverse transformation algorithms. Furthermore, an optimized workflow is proposed to facilitate the processing of large-scale hyperspectral datasets. The effectiveness of the proposed method is demonstrated through an application analysis using airborne HyMap imagery, with experimental outcomes indicating high application accuracy and enhanced processing efficiency.\\n\",\"PeriodicalId\":505918,\"journal\":{\"name\":\"The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences\",\"volume\":\" May\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/isprs-archives-xlviii-1-2024-831-2024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/isprs-archives-xlviii-1-2024-831-2024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
摘要几何校正是航空遥感图像预处理的关键步骤,对于确保后续定量分析的准确性至关重要。如何对机载高光谱数据进行精确、高效的几何校正仍是该领域的一项重大挑战。本研究提出了一种利用 DEM 数据对不受控制的机载图像进行系统级和精细尺度几何校正的新方法,该方法集成了正向和反向变换算法。此外,还提出了一个优化的工作流程,以促进大规模高光谱数据集的处理。通过使用机载 HyMap 图像进行应用分析,证明了所提方法的有效性,实验结果表明应用精度高,处理效率更高。
Efficient Geometric Correction Workflow for Airborne Hyperspectral Images through DEM-Driven Correction Techniques
Abstract. Geometric correction, a pivotal step in the preprocessing of airborne remote sensing imagery, is critical for ensuring the accuracy of subsequent quantitative analyses. Achieving precise and efficient geometric correction for airborne hyperspectral data remains a significant challenge in the field. This study presents a new method for system-level and fine-scale geometric correction of uncontrolled airborne images utilizing DEM data, which integrates forward and inverse transformation algorithms. Furthermore, an optimized workflow is proposed to facilitate the processing of large-scale hyperspectral datasets. The effectiveness of the proposed method is demonstrated through an application analysis using airborne HyMap imagery, with experimental outcomes indicating high application accuracy and enhanced processing efficiency.