Phillip Gopon, James O. Douglas, Hazel Gardner, Michael P. Moody, Bernard Wood, Alexander N. Halliday, Jon Wade
{"title":"月球表面的金属撞击和汽化:月球金属来源的纳米地球化学见解","authors":"Phillip Gopon, James O. Douglas, Hazel Gardner, Michael P. Moody, Bernard Wood, Alexander N. Halliday, Jon Wade","doi":"10.1111/maps.14184","DOIUrl":null,"url":null,"abstract":"<p>Millimeter-to-nanometer-sized iron- and nickel-rich metals are ubiquitous on the lunar surface. The proposed origin of these metals falls into two broad classes which should have distinct geochemical signatures—(1) the reduction of iron-bearing minerals or (2) the addition of metals from meteoritic sources. The metals measured here from the Apollo 16 regolith possess low Ni (2–6 wt%) and elevated Ge (80–350 ppm) suggesting a meteoritic origin. However, the measured Ni is lower, and the Ge higher than currently known iron meteorites. In comparison to the low Ni iron meteorites, the even lower Ni and higher Ge contents exhibited by these lunar metals are best explained by impact-driven volatilization and condensation of Ni-poor meteoritic metal during their impact and addition to the lunar surface. The presence of similar, low Ni-bearing metals in Apollo return samples from geographically distant sites suggests that this geochemical signature might not be restricted to just the Apollo 16 locality and that volatility-driven modification of meteoritic metals are a common feature of lunar regolith formation. The possibility of a significant low Ni/high Ge meteoritic component in the lunar regolith, and the observation of chemical fractionation during emplacement, has implications for the interpretation of both lunar remote-sensing data and bulk geochemical data derived from sample return material. Additionally, our observation of predominantly meteoritic sourced metals has implications for the prevalence of meteoritic addition on airless planetary bodies.</p>","PeriodicalId":18555,"journal":{"name":"Meteoritics & Planetary Science","volume":"59 7","pages":"1775-1789"},"PeriodicalIF":2.2000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/maps.14184","citationCount":"0","resultStr":"{\"title\":\"Metal impact and vaporization on the Moon's surface: Nano-geochemical insights into the source of lunar metals\",\"authors\":\"Phillip Gopon, James O. Douglas, Hazel Gardner, Michael P. Moody, Bernard Wood, Alexander N. Halliday, Jon Wade\",\"doi\":\"10.1111/maps.14184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Millimeter-to-nanometer-sized iron- and nickel-rich metals are ubiquitous on the lunar surface. The proposed origin of these metals falls into two broad classes which should have distinct geochemical signatures—(1) the reduction of iron-bearing minerals or (2) the addition of metals from meteoritic sources. The metals measured here from the Apollo 16 regolith possess low Ni (2–6 wt%) and elevated Ge (80–350 ppm) suggesting a meteoritic origin. However, the measured Ni is lower, and the Ge higher than currently known iron meteorites. In comparison to the low Ni iron meteorites, the even lower Ni and higher Ge contents exhibited by these lunar metals are best explained by impact-driven volatilization and condensation of Ni-poor meteoritic metal during their impact and addition to the lunar surface. The presence of similar, low Ni-bearing metals in Apollo return samples from geographically distant sites suggests that this geochemical signature might not be restricted to just the Apollo 16 locality and that volatility-driven modification of meteoritic metals are a common feature of lunar regolith formation. The possibility of a significant low Ni/high Ge meteoritic component in the lunar regolith, and the observation of chemical fractionation during emplacement, has implications for the interpretation of both lunar remote-sensing data and bulk geochemical data derived from sample return material. Additionally, our observation of predominantly meteoritic sourced metals has implications for the prevalence of meteoritic addition on airless planetary bodies.</p>\",\"PeriodicalId\":18555,\"journal\":{\"name\":\"Meteoritics & Planetary Science\",\"volume\":\"59 7\",\"pages\":\"1775-1789\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/maps.14184\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Meteoritics & Planetary Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/maps.14184\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meteoritics & Planetary Science","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/maps.14184","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Metal impact and vaporization on the Moon's surface: Nano-geochemical insights into the source of lunar metals
Millimeter-to-nanometer-sized iron- and nickel-rich metals are ubiquitous on the lunar surface. The proposed origin of these metals falls into two broad classes which should have distinct geochemical signatures—(1) the reduction of iron-bearing minerals or (2) the addition of metals from meteoritic sources. The metals measured here from the Apollo 16 regolith possess low Ni (2–6 wt%) and elevated Ge (80–350 ppm) suggesting a meteoritic origin. However, the measured Ni is lower, and the Ge higher than currently known iron meteorites. In comparison to the low Ni iron meteorites, the even lower Ni and higher Ge contents exhibited by these lunar metals are best explained by impact-driven volatilization and condensation of Ni-poor meteoritic metal during their impact and addition to the lunar surface. The presence of similar, low Ni-bearing metals in Apollo return samples from geographically distant sites suggests that this geochemical signature might not be restricted to just the Apollo 16 locality and that volatility-driven modification of meteoritic metals are a common feature of lunar regolith formation. The possibility of a significant low Ni/high Ge meteoritic component in the lunar regolith, and the observation of chemical fractionation during emplacement, has implications for the interpretation of both lunar remote-sensing data and bulk geochemical data derived from sample return material. Additionally, our observation of predominantly meteoritic sourced metals has implications for the prevalence of meteoritic addition on airless planetary bodies.
期刊介绍:
First issued in 1953, the journal publishes research articles describing the latest results of new studies, invited reviews of major topics in planetary science, editorials on issues of current interest in the field, and book reviews. The publications are original, not considered for publication elsewhere, and undergo peer-review. The topics include the origin and history of the solar system, planets and natural satellites, interplanetary dust and interstellar medium, lunar samples, meteors, and meteorites, asteroids, comets, craters, and tektites. Our authors and editors are professional scientists representing numerous disciplines, including astronomy, astrophysics, physics, geophysics, chemistry, isotope geochemistry, mineralogy, earth science, geology, and biology. MAPS has subscribers in over 40 countries. Fifty percent of MAPS'' readers are based outside the USA. The journal is available in hard copy and online.