动态定位控制系统的智能控制算法

IF 2 Q2 ENGINEERING, MECHANICAL Frontiers in Mechanical Engineering Pub Date : 2024-05-10 DOI:10.3389/fmech.2024.1371218
Hongqiang Guan
{"title":"动态定位控制系统的智能控制算法","authors":"Hongqiang Guan","doi":"10.3389/fmech.2024.1371218","DOIUrl":null,"url":null,"abstract":"Introduction: The dynamic positioning system resists the environmental forces such as wind, wave and current acting on the ship through the thruster, so that the ship can remain in the position required by the sea level as much as possible, and the operation is very convenient. But its current dynamic positioning ability can not meet people's needs.Methods: A Kalman filter based on untracked optimization was designed for dynamic positioning control system. Then the intelligent control algorithm is designed for the dynamic positioning top-level controller and thrust optimal distribution controller, which occupy an important position in the system, namely the adaptive weight variation particle swarm optimization algorithm and thrust optimal distribution algorithm.Results and Discussion: The average position error of three degrees of freedom after filter processing is 1.53 m. Compared with other mainstream controllers, the mean root error of controllers based on adaptive weight variation particle swarm optimization in environment A and B is 2.295 and 1.8 m, respectively. In environment C, the controller based on thrust optimization allocation algorithm can get the optimal solution when the full rotary thruster reaches the 7 s and the channel thruster reaches the 4 s. The thrust exclusion zone is crossed at 46 s in environment D. In the dynamic positioning capability curve of the system, the experimental hull can balance the different environmental loads at all angles. In summary, the intelligent control algorithm proposed in this paper can effectively improve the positioning ability of the dynamic positioning control system and meet the needs of people for ship navigation today.","PeriodicalId":53220,"journal":{"name":"Frontiers in Mechanical Engineering","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intelligent control algorithm for dynamic positioning control system\",\"authors\":\"Hongqiang Guan\",\"doi\":\"10.3389/fmech.2024.1371218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction: The dynamic positioning system resists the environmental forces such as wind, wave and current acting on the ship through the thruster, so that the ship can remain in the position required by the sea level as much as possible, and the operation is very convenient. But its current dynamic positioning ability can not meet people's needs.Methods: A Kalman filter based on untracked optimization was designed for dynamic positioning control system. Then the intelligent control algorithm is designed for the dynamic positioning top-level controller and thrust optimal distribution controller, which occupy an important position in the system, namely the adaptive weight variation particle swarm optimization algorithm and thrust optimal distribution algorithm.Results and Discussion: The average position error of three degrees of freedom after filter processing is 1.53 m. Compared with other mainstream controllers, the mean root error of controllers based on adaptive weight variation particle swarm optimization in environment A and B is 2.295 and 1.8 m, respectively. In environment C, the controller based on thrust optimization allocation algorithm can get the optimal solution when the full rotary thruster reaches the 7 s and the channel thruster reaches the 4 s. The thrust exclusion zone is crossed at 46 s in environment D. In the dynamic positioning capability curve of the system, the experimental hull can balance the different environmental loads at all angles. In summary, the intelligent control algorithm proposed in this paper can effectively improve the positioning ability of the dynamic positioning control system and meet the needs of people for ship navigation today.\",\"PeriodicalId\":53220,\"journal\":{\"name\":\"Frontiers in Mechanical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Mechanical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fmech.2024.1371218\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fmech.2024.1371218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

简介动态定位系统通过推进器抵抗作用在船舶上的风、浪、流等环境力,使船舶尽可能保持在海平面要求的位置,操作十分方便。但其目前的动态定位能力还不能满足人们的需求:方法:为动态定位控制系统设计了基于无轨优化的卡尔曼滤波器。方法:为动态定位控制系统设计了基于无轨优化的卡尔曼滤波器,然后为在系统中占据重要地位的动态定位顶层控制器和推力优化分布控制器设计了智能控制算法,即自适应权值变化粒子群优化算法和推力优化分布算法:与其他主流控制器相比,基于自适应权变粒子群优化算法的控制器在环境 A 和 B 中的平均根误差分别为 2.295 米和 1.8 米。在环境 C 中,基于推力优化分配算法的控制器可以在全回转推进器达到 7 s、通道推进器达到 4 s 时获得最优解。综上所述,本文提出的智能控制算法能有效提高动态定位控制系统的定位能力,满足当今人们对船舶导航的需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Intelligent control algorithm for dynamic positioning control system
Introduction: The dynamic positioning system resists the environmental forces such as wind, wave and current acting on the ship through the thruster, so that the ship can remain in the position required by the sea level as much as possible, and the operation is very convenient. But its current dynamic positioning ability can not meet people's needs.Methods: A Kalman filter based on untracked optimization was designed for dynamic positioning control system. Then the intelligent control algorithm is designed for the dynamic positioning top-level controller and thrust optimal distribution controller, which occupy an important position in the system, namely the adaptive weight variation particle swarm optimization algorithm and thrust optimal distribution algorithm.Results and Discussion: The average position error of three degrees of freedom after filter processing is 1.53 m. Compared with other mainstream controllers, the mean root error of controllers based on adaptive weight variation particle swarm optimization in environment A and B is 2.295 and 1.8 m, respectively. In environment C, the controller based on thrust optimization allocation algorithm can get the optimal solution when the full rotary thruster reaches the 7 s and the channel thruster reaches the 4 s. The thrust exclusion zone is crossed at 46 s in environment D. In the dynamic positioning capability curve of the system, the experimental hull can balance the different environmental loads at all angles. In summary, the intelligent control algorithm proposed in this paper can effectively improve the positioning ability of the dynamic positioning control system and meet the needs of people for ship navigation today.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Mechanical Engineering
Frontiers in Mechanical Engineering Engineering-Industrial and Manufacturing Engineering
CiteScore
4.40
自引率
0.00%
发文量
115
审稿时长
14 weeks
期刊最新文献
Finite element analysis and automation of a medium scale grinder applied to the manufacture of cassava starch Editorial: Lightweight mechanical and aerospace structures and materials Analysis of the thickness of layered armor to provide protection against 7.62 mm ball projectiles using experimental and numerical methods Parameter fuzzy rectification for sliding mode control of five-phase permanent magnet synchronous motor speed control system Surrogate-based worst-case analysis of a knee joint model using Genetic Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1