{"title":"使用 EfficientNet 进行单张图像建筑高度估算:简化、可扩展的方法","authors":"Alexander W. Olson, Shoshanna Saxe","doi":"10.32866/001c.116609","DOIUrl":null,"url":null,"abstract":"We present a novel approach for estimating building heights using single street-level images. The method employs EfficientNet, a state-of-the-art neural network, to eliminate the need for additional data like street maps. We compare this new method with existing techniques, focusing on accuracy evaluated through metrics like Mean Absolute Error (MAE). The model is pre-trained on the Cityscapes dataset and fine-tuned on images from Toronto’s 3D Massing dataset. It demonstrates strong accuracy, with an MAE of 1.21 meters, outperforming traditional methods.","PeriodicalId":508951,"journal":{"name":"Findings","volume":" 13","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single-Image Building Height Estimation Using EfficientNet: A Simplified, Scalable Approach\",\"authors\":\"Alexander W. Olson, Shoshanna Saxe\",\"doi\":\"10.32866/001c.116609\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a novel approach for estimating building heights using single street-level images. The method employs EfficientNet, a state-of-the-art neural network, to eliminate the need for additional data like street maps. We compare this new method with existing techniques, focusing on accuracy evaluated through metrics like Mean Absolute Error (MAE). The model is pre-trained on the Cityscapes dataset and fine-tuned on images from Toronto’s 3D Massing dataset. It demonstrates strong accuracy, with an MAE of 1.21 meters, outperforming traditional methods.\",\"PeriodicalId\":508951,\"journal\":{\"name\":\"Findings\",\"volume\":\" 13\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Findings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32866/001c.116609\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Findings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32866/001c.116609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们提出了一种利用单张街道图像估算建筑物高度的新方法。该方法采用最先进的神经网络 EfficientNet,无需街道地图等额外数据。我们将这种新方法与现有技术进行了比较,重点是通过平均绝对误差 (MAE) 等指标来评估准确性。该模型在城市景观数据集上进行了预训练,并在多伦多 3D Massing 数据集的图像上进行了微调。该模型的准确性很高,MAE 为 1.21 米,优于传统方法。
Single-Image Building Height Estimation Using EfficientNet: A Simplified, Scalable Approach
We present a novel approach for estimating building heights using single street-level images. The method employs EfficientNet, a state-of-the-art neural network, to eliminate the need for additional data like street maps. We compare this new method with existing techniques, focusing on accuracy evaluated through metrics like Mean Absolute Error (MAE). The model is pre-trained on the Cityscapes dataset and fine-tuned on images from Toronto’s 3D Massing dataset. It demonstrates strong accuracy, with an MAE of 1.21 meters, outperforming traditional methods.