用于航空图像语义分割和矢量化的多传感器数据分析

V. Knyaz, V. Kniaz, S. Zheltov, Kirill S. Petrov
{"title":"用于航空图像语义分割和矢量化的多传感器数据分析","authors":"V. Knyaz, V. Kniaz, S. Zheltov, Kirill S. Petrov","doi":"10.5194/isprs-archives-xlviii-1-2024-291-2024","DOIUrl":null,"url":null,"abstract":"Abstract. One of the urgent and constantly in demand problems is updating maps. Maps, representing geo-information in vector form, have undoubted advantages in compactness and ”readability” compared to aerial photographs. The issue of maps actuality is critically important for rational urban planning, precision farming, the relevance of the cadastre and other geospatial applications. Various sources of data are used for maps updating, with aerial imagery being the main and rich source of information. Automatic processing of aerial photographs makes it possible to efficiently extract vector information, providing operational monitoring and accounting for changes that have appeared. The presented study addresses the problem of multi sensor information fusion in order to obtain accurate vector information. We use aerial images as a main data source and additionally the data of laser scanning and ground survey to increase performance of automatic image semantic segmentation and vectorization. The proposed framework is demonstrated on the task of forest monitoring.\n","PeriodicalId":505918,"journal":{"name":"The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences","volume":" 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-sensor Data Analysis for Aerial Image Semantic Segmentation and Vectorization\",\"authors\":\"V. Knyaz, V. Kniaz, S. Zheltov, Kirill S. Petrov\",\"doi\":\"10.5194/isprs-archives-xlviii-1-2024-291-2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. One of the urgent and constantly in demand problems is updating maps. Maps, representing geo-information in vector form, have undoubted advantages in compactness and ”readability” compared to aerial photographs. The issue of maps actuality is critically important for rational urban planning, precision farming, the relevance of the cadastre and other geospatial applications. Various sources of data are used for maps updating, with aerial imagery being the main and rich source of information. Automatic processing of aerial photographs makes it possible to efficiently extract vector information, providing operational monitoring and accounting for changes that have appeared. The presented study addresses the problem of multi sensor information fusion in order to obtain accurate vector information. We use aerial images as a main data source and additionally the data of laser scanning and ground survey to increase performance of automatic image semantic segmentation and vectorization. The proposed framework is demonstrated on the task of forest monitoring.\\n\",\"PeriodicalId\":505918,\"journal\":{\"name\":\"The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences\",\"volume\":\" 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/isprs-archives-xlviii-1-2024-291-2024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/isprs-archives-xlviii-1-2024-291-2024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要更新地图是一个紧迫且需求不断增加的问题。与航拍照片相比,以矢量形式表示地理信息的地图无疑在紧凑性和 "可读性 "方面具有优势。地图的真实性问题对于合理的城市规划、精准农业、地籍的相关性和其他地理空间应用至关重要。用于地图更新的数据来源多种多样,其中航空图像是主要和丰富的信息来源。对航空照片的自动处理可以有效地提取矢量信息,提供业务监测并说明已出现的变化。本研究探讨了多传感器信息融合问题,以获取准确的矢量信息。我们将航空图像作为主要数据源,同时使用激光扫描和地面勘测数据来提高自动图像语义分割和矢量化的性能。我们在森林监测任务中演示了所提出的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-sensor Data Analysis for Aerial Image Semantic Segmentation and Vectorization
Abstract. One of the urgent and constantly in demand problems is updating maps. Maps, representing geo-information in vector form, have undoubted advantages in compactness and ”readability” compared to aerial photographs. The issue of maps actuality is critically important for rational urban planning, precision farming, the relevance of the cadastre and other geospatial applications. Various sources of data are used for maps updating, with aerial imagery being the main and rich source of information. Automatic processing of aerial photographs makes it possible to efficiently extract vector information, providing operational monitoring and accounting for changes that have appeared. The presented study addresses the problem of multi sensor information fusion in order to obtain accurate vector information. We use aerial images as a main data source and additionally the data of laser scanning and ground survey to increase performance of automatic image semantic segmentation and vectorization. The proposed framework is demonstrated on the task of forest monitoring.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The 19th 3D GeoInfo Conference: Preface Archives Monitoring Time-Varying Changes of Historic Structures Through Photogrammetry-Driven Digital Twinning Multimedia Photogrammetry for Automated 3D Monitoring in Archaeological Waterlogged Wood Conservation Efficient Calculation of Multi-Scale Features for MMS Point Clouds Concepts for compensation of wave effects when measuring through water surfaces in photogrammetric applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1