用于电动主轴的高速齿线圈永磁同步机

IF 1.1 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC International Journal of Applied Electromagnetics and Mechanics Pub Date : 2024-05-10 DOI:10.3233/jae-230006
Zichong Zhu, Wenjie Ge, Jun Deng, Jianning Dong
{"title":"用于电动主轴的高速齿线圈永磁同步机","authors":"Zichong Zhu, Wenjie Ge, Jun Deng, Jianning Dong","doi":"10.3233/jae-230006","DOIUrl":null,"url":null,"abstract":"The slender shape of the driving machine leads to a low rigidity and large axial thermal elongation of the motorized spindle, which deteriorates the machining precision. To solve these problems and pursue a more compact size, this paper investigates the feasibility of using a tooth-coil permanent magnet synchronous machine in a high-speed spindle, replacing the original motor that has the conventional distributed winding. Comprehensive performance and behavior of machines with distributed and tooth-coil windings are comparatively analyzed, in terms of the essential torque ripples, winding inductances, electromagnetic losses, rotor integrity, and heat dissipation of the spindle. Thorough numerical simulation results indicate that the newly designed tooth-coil winding solution shows significant advantages over the original design, regarding high rotor rigidity, low torque ripples, reduced electromagnetic losses, and reduced shaft thermal elongation. Prototypes and test setups for the high-speed tooth-coil machine are built, where preliminary measurements are carried out to validate the analysis results and system design.","PeriodicalId":50340,"journal":{"name":"International Journal of Applied Electromagnetics and Mechanics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-speed tooth-coil permanent magnet synchronous machine for motorized spindle application\",\"authors\":\"Zichong Zhu, Wenjie Ge, Jun Deng, Jianning Dong\",\"doi\":\"10.3233/jae-230006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The slender shape of the driving machine leads to a low rigidity and large axial thermal elongation of the motorized spindle, which deteriorates the machining precision. To solve these problems and pursue a more compact size, this paper investigates the feasibility of using a tooth-coil permanent magnet synchronous machine in a high-speed spindle, replacing the original motor that has the conventional distributed winding. Comprehensive performance and behavior of machines with distributed and tooth-coil windings are comparatively analyzed, in terms of the essential torque ripples, winding inductances, electromagnetic losses, rotor integrity, and heat dissipation of the spindle. Thorough numerical simulation results indicate that the newly designed tooth-coil winding solution shows significant advantages over the original design, regarding high rotor rigidity, low torque ripples, reduced electromagnetic losses, and reduced shaft thermal elongation. Prototypes and test setups for the high-speed tooth-coil machine are built, where preliminary measurements are carried out to validate the analysis results and system design.\",\"PeriodicalId\":50340,\"journal\":{\"name\":\"International Journal of Applied Electromagnetics and Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Electromagnetics and Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3233/jae-230006\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Electromagnetics and Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3233/jae-230006","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

驱动机器的细长形状导致电主轴刚性低、轴向热伸长大,从而降低了加工精度。为了解决这些问题并追求更紧凑的尺寸,本文研究了在高速主轴中使用齿线圈永磁同步电机的可行性,以取代原有的传统分布式绕组电机。本文从主轴的基本转矩纹波、绕组电感、电磁损耗、转子完整性和散热等方面,对采用分布式绕组和齿线圈绕组的机器的综合性能和行为进行了比较分析。全面的数值模拟结果表明,新设计的齿线圈绕组方案在高转子刚度、低扭矩纹波、减少电磁损耗和降低轴热伸长方面比原设计具有显著优势。高速齿盘式机器的原型和测试装置已经制作完成,并进行了初步测量,以验证分析结果和系统设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
High-speed tooth-coil permanent magnet synchronous machine for motorized spindle application
The slender shape of the driving machine leads to a low rigidity and large axial thermal elongation of the motorized spindle, which deteriorates the machining precision. To solve these problems and pursue a more compact size, this paper investigates the feasibility of using a tooth-coil permanent magnet synchronous machine in a high-speed spindle, replacing the original motor that has the conventional distributed winding. Comprehensive performance and behavior of machines with distributed and tooth-coil windings are comparatively analyzed, in terms of the essential torque ripples, winding inductances, electromagnetic losses, rotor integrity, and heat dissipation of the spindle. Thorough numerical simulation results indicate that the newly designed tooth-coil winding solution shows significant advantages over the original design, regarding high rotor rigidity, low torque ripples, reduced electromagnetic losses, and reduced shaft thermal elongation. Prototypes and test setups for the high-speed tooth-coil machine are built, where preliminary measurements are carried out to validate the analysis results and system design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
100
审稿时长
4.6 months
期刊介绍: The aim of the International Journal of Applied Electromagnetics and Mechanics is to contribute to intersciences coupling applied electromagnetics, mechanics and materials. The journal also intends to stimulate the further development of current technology in industry. The main subjects covered by the journal are: Physics and mechanics of electromagnetic materials and devices Computational electromagnetics in materials and devices Applications of electromagnetic fields and materials The three interrelated key subjects – electromagnetics, mechanics and materials - include the following aspects: electromagnetic NDE, electromagnetic machines and devices, electromagnetic materials and structures, electromagnetic fluids, magnetoelastic effects and magnetosolid mechanics, magnetic levitations, electromagnetic propulsion, bioelectromagnetics, and inverse problems in electromagnetics. The editorial policy is to combine information and experience from both the latest high technology fields and as well as the well-established technologies within applied electromagnetics.
期刊最新文献
Optimization design of the modified SST based on adaptive genetic algorithm Influence of key design parameters on the critical speed of eddy current brake Numerical simulation of contact surface stress distribution based on stress-magnetization effect surface Optimization design and measurement of septum magnet with low leakage field Multi-objective optimization of permanent magnet motor based on Improved Salp Swarm Algorithm and Spearman correlation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1