{"title":"用于电动主轴的高速齿线圈永磁同步机","authors":"Zichong Zhu, Wenjie Ge, Jun Deng, Jianning Dong","doi":"10.3233/jae-230006","DOIUrl":null,"url":null,"abstract":"The slender shape of the driving machine leads to a low rigidity and large axial thermal elongation of the motorized spindle, which deteriorates the machining precision. To solve these problems and pursue a more compact size, this paper investigates the feasibility of using a tooth-coil permanent magnet synchronous machine in a high-speed spindle, replacing the original motor that has the conventional distributed winding. Comprehensive performance and behavior of machines with distributed and tooth-coil windings are comparatively analyzed, in terms of the essential torque ripples, winding inductances, electromagnetic losses, rotor integrity, and heat dissipation of the spindle. Thorough numerical simulation results indicate that the newly designed tooth-coil winding solution shows significant advantages over the original design, regarding high rotor rigidity, low torque ripples, reduced electromagnetic losses, and reduced shaft thermal elongation. Prototypes and test setups for the high-speed tooth-coil machine are built, where preliminary measurements are carried out to validate the analysis results and system design.","PeriodicalId":50340,"journal":{"name":"International Journal of Applied Electromagnetics and Mechanics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-speed tooth-coil permanent magnet synchronous machine for motorized spindle application\",\"authors\":\"Zichong Zhu, Wenjie Ge, Jun Deng, Jianning Dong\",\"doi\":\"10.3233/jae-230006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The slender shape of the driving machine leads to a low rigidity and large axial thermal elongation of the motorized spindle, which deteriorates the machining precision. To solve these problems and pursue a more compact size, this paper investigates the feasibility of using a tooth-coil permanent magnet synchronous machine in a high-speed spindle, replacing the original motor that has the conventional distributed winding. Comprehensive performance and behavior of machines with distributed and tooth-coil windings are comparatively analyzed, in terms of the essential torque ripples, winding inductances, electromagnetic losses, rotor integrity, and heat dissipation of the spindle. Thorough numerical simulation results indicate that the newly designed tooth-coil winding solution shows significant advantages over the original design, regarding high rotor rigidity, low torque ripples, reduced electromagnetic losses, and reduced shaft thermal elongation. Prototypes and test setups for the high-speed tooth-coil machine are built, where preliminary measurements are carried out to validate the analysis results and system design.\",\"PeriodicalId\":50340,\"journal\":{\"name\":\"International Journal of Applied Electromagnetics and Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Electromagnetics and Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3233/jae-230006\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Electromagnetics and Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3233/jae-230006","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
High-speed tooth-coil permanent magnet synchronous machine for motorized spindle application
The slender shape of the driving machine leads to a low rigidity and large axial thermal elongation of the motorized spindle, which deteriorates the machining precision. To solve these problems and pursue a more compact size, this paper investigates the feasibility of using a tooth-coil permanent magnet synchronous machine in a high-speed spindle, replacing the original motor that has the conventional distributed winding. Comprehensive performance and behavior of machines with distributed and tooth-coil windings are comparatively analyzed, in terms of the essential torque ripples, winding inductances, electromagnetic losses, rotor integrity, and heat dissipation of the spindle. Thorough numerical simulation results indicate that the newly designed tooth-coil winding solution shows significant advantages over the original design, regarding high rotor rigidity, low torque ripples, reduced electromagnetic losses, and reduced shaft thermal elongation. Prototypes and test setups for the high-speed tooth-coil machine are built, where preliminary measurements are carried out to validate the analysis results and system design.
期刊介绍:
The aim of the International Journal of Applied Electromagnetics and Mechanics is to contribute to intersciences coupling applied electromagnetics, mechanics and materials. The journal also intends to stimulate the further development of current technology in industry. The main subjects covered by the journal are:
Physics and mechanics of electromagnetic materials and devices
Computational electromagnetics in materials and devices
Applications of electromagnetic fields and materials
The three interrelated key subjects – electromagnetics, mechanics and materials - include the following aspects: electromagnetic NDE, electromagnetic machines and devices, electromagnetic materials and structures, electromagnetic fluids, magnetoelastic effects and magnetosolid mechanics, magnetic levitations, electromagnetic propulsion, bioelectromagnetics, and inverse problems in electromagnetics.
The editorial policy is to combine information and experience from both the latest high technology fields and as well as the well-established technologies within applied electromagnetics.