D. Cabarkapa, Quincy R. Johnson, Jelena Aleksic, Damjana V. Cabarkapa, Nicolas M. Philipp, Marko Sekulic, Darko Krsman, Nenad Trunic, Andrew C Fry
{"title":"3 × 3 和 5 × 5 精英职业男子篮球运动员立定跳远和短跑成绩的比较","authors":"D. Cabarkapa, Quincy R. Johnson, Jelena Aleksic, Damjana V. Cabarkapa, Nicolas M. Philipp, Marko Sekulic, Darko Krsman, Nenad Trunic, Andrew C Fry","doi":"10.3389/fspor.2024.1394739","DOIUrl":null,"url":null,"abstract":"Given its fast-growing popularity and unique on-court competitive demands, 3 × 3 basketball has captured a considerable amount of attention over recent years. However, unlike research focused on studying 5 × 5 basketball players, there is a lack of scientific literature focused on examining countermovement vertical jump (CMJ) and sprint performance characteristics of 3 × 3 athletes. Thus, the purpose of the present study was to compare force-time metrics during both eccentric and concentric phases of the CMJ and acceleration and deceleration capabilities between 3 × 3 and 5 × 5 top-tier professional male basketball athletes. Ten 3 × 3 and eleven 5 × 5 professional basketball players volunteered to participate in the present study. Upon completion of a standardized warm-up, each athlete performed three maximum-effort CMJs, followed by two 10 m sprints. A uni-axial force plate system sampling at 1,000 Hz was used to analyze CMJ force-time metrics and a radar gun sampling at 47 Hz was used to derive sprint acceleration-deceleration measures. Independent t-tests and Hedge's g were used to examine between-group statistically significant differences (p < 0.05) and effect size magnitudes. The findings of the present study reveal that 3 × 3 and 5 × 5 professional male basketball players tend to display similar neuromuscular performance characteristics as no significant differences were observed in any force-time metric during both eccentric and concentric phases of the CMJ (g = 0.061–0.468). Yet, prominent differences were found in multiple measures of sprint performance, with large effect size magnitudes (g = 1.221–1.881). Specifically, 5 × 5 basketball players displayed greater average and maximal deceleration and faster time-to-stop than their 3 × 3 counterparts. Overall, these findings provide reference values that sports practitioners can use when assessing athletes' CMJ and sprint performance capabilities as well as when developing sport-specific training regimens to mimic on-court competitive demands.","PeriodicalId":509602,"journal":{"name":"Frontiers in Sports and Active Living","volume":" 70","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of vertical jump and sprint performances between 3 × 3 and 5 × 5 elite professional male basketball players\",\"authors\":\"D. Cabarkapa, Quincy R. Johnson, Jelena Aleksic, Damjana V. Cabarkapa, Nicolas M. Philipp, Marko Sekulic, Darko Krsman, Nenad Trunic, Andrew C Fry\",\"doi\":\"10.3389/fspor.2024.1394739\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given its fast-growing popularity and unique on-court competitive demands, 3 × 3 basketball has captured a considerable amount of attention over recent years. However, unlike research focused on studying 5 × 5 basketball players, there is a lack of scientific literature focused on examining countermovement vertical jump (CMJ) and sprint performance characteristics of 3 × 3 athletes. Thus, the purpose of the present study was to compare force-time metrics during both eccentric and concentric phases of the CMJ and acceleration and deceleration capabilities between 3 × 3 and 5 × 5 top-tier professional male basketball athletes. Ten 3 × 3 and eleven 5 × 5 professional basketball players volunteered to participate in the present study. Upon completion of a standardized warm-up, each athlete performed three maximum-effort CMJs, followed by two 10 m sprints. A uni-axial force plate system sampling at 1,000 Hz was used to analyze CMJ force-time metrics and a radar gun sampling at 47 Hz was used to derive sprint acceleration-deceleration measures. Independent t-tests and Hedge's g were used to examine between-group statistically significant differences (p < 0.05) and effect size magnitudes. The findings of the present study reveal that 3 × 3 and 5 × 5 professional male basketball players tend to display similar neuromuscular performance characteristics as no significant differences were observed in any force-time metric during both eccentric and concentric phases of the CMJ (g = 0.061–0.468). Yet, prominent differences were found in multiple measures of sprint performance, with large effect size magnitudes (g = 1.221–1.881). Specifically, 5 × 5 basketball players displayed greater average and maximal deceleration and faster time-to-stop than their 3 × 3 counterparts. Overall, these findings provide reference values that sports practitioners can use when assessing athletes' CMJ and sprint performance capabilities as well as when developing sport-specific training regimens to mimic on-court competitive demands.\",\"PeriodicalId\":509602,\"journal\":{\"name\":\"Frontiers in Sports and Active Living\",\"volume\":\" 70\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Sports and Active Living\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fspor.2024.1394739\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Sports and Active Living","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fspor.2024.1394739","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparison of vertical jump and sprint performances between 3 × 3 and 5 × 5 elite professional male basketball players
Given its fast-growing popularity and unique on-court competitive demands, 3 × 3 basketball has captured a considerable amount of attention over recent years. However, unlike research focused on studying 5 × 5 basketball players, there is a lack of scientific literature focused on examining countermovement vertical jump (CMJ) and sprint performance characteristics of 3 × 3 athletes. Thus, the purpose of the present study was to compare force-time metrics during both eccentric and concentric phases of the CMJ and acceleration and deceleration capabilities between 3 × 3 and 5 × 5 top-tier professional male basketball athletes. Ten 3 × 3 and eleven 5 × 5 professional basketball players volunteered to participate in the present study. Upon completion of a standardized warm-up, each athlete performed three maximum-effort CMJs, followed by two 10 m sprints. A uni-axial force plate system sampling at 1,000 Hz was used to analyze CMJ force-time metrics and a radar gun sampling at 47 Hz was used to derive sprint acceleration-deceleration measures. Independent t-tests and Hedge's g were used to examine between-group statistically significant differences (p < 0.05) and effect size magnitudes. The findings of the present study reveal that 3 × 3 and 5 × 5 professional male basketball players tend to display similar neuromuscular performance characteristics as no significant differences were observed in any force-time metric during both eccentric and concentric phases of the CMJ (g = 0.061–0.468). Yet, prominent differences were found in multiple measures of sprint performance, with large effect size magnitudes (g = 1.221–1.881). Specifically, 5 × 5 basketball players displayed greater average and maximal deceleration and faster time-to-stop than their 3 × 3 counterparts. Overall, these findings provide reference values that sports practitioners can use when assessing athletes' CMJ and sprint performance capabilities as well as when developing sport-specific training regimens to mimic on-court competitive demands.