{"title":"大规模高质量石墨烯生产和应用分析","authors":"Sijia Li","doi":"10.54254/2755-2721/63/20240999","DOIUrl":null,"url":null,"abstract":"Graphene, a single-atom-thick layer of carbon atoms arranged in a hexagonal lattice, is the thinnest and strongest material known to mankind. It has excellent electrical, thermal, and mechanical properties, making it a promising material for a wide range of applications in electronics, optoelectronics, energy storage, and more. With the increasing demand for graphene in various applications, large-scale and high-quality graphene production has become a significant challenge. While early methods of graphene production involved mechanical exfoliation, this method is limited in terms of scalability and yield. To meet the increasing demand for large-scale production of graphene, various methods have been developed in recent years, including chemical vapor precipitation, epitaxial crystal growth, graphene oxide reduction and solvent exfoliation and so on. This study aims to introduce several existing methods for the mass production of graphene with high quality and analyzes the advantages and disadvantage involve thereof. The findings in this paper may provide a valuable reference for the industrial-scale production of graphene.","PeriodicalId":350976,"journal":{"name":"Applied and Computational Engineering","volume":" 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of large-scale high-quality graphene production and applications\",\"authors\":\"Sijia Li\",\"doi\":\"10.54254/2755-2721/63/20240999\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graphene, a single-atom-thick layer of carbon atoms arranged in a hexagonal lattice, is the thinnest and strongest material known to mankind. It has excellent electrical, thermal, and mechanical properties, making it a promising material for a wide range of applications in electronics, optoelectronics, energy storage, and more. With the increasing demand for graphene in various applications, large-scale and high-quality graphene production has become a significant challenge. While early methods of graphene production involved mechanical exfoliation, this method is limited in terms of scalability and yield. To meet the increasing demand for large-scale production of graphene, various methods have been developed in recent years, including chemical vapor precipitation, epitaxial crystal growth, graphene oxide reduction and solvent exfoliation and so on. This study aims to introduce several existing methods for the mass production of graphene with high quality and analyzes the advantages and disadvantage involve thereof. The findings in this paper may provide a valuable reference for the industrial-scale production of graphene.\",\"PeriodicalId\":350976,\"journal\":{\"name\":\"Applied and Computational Engineering\",\"volume\":\" 8\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied and Computational Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54254/2755-2721/63/20240999\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54254/2755-2721/63/20240999","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analysis of large-scale high-quality graphene production and applications
Graphene, a single-atom-thick layer of carbon atoms arranged in a hexagonal lattice, is the thinnest and strongest material known to mankind. It has excellent electrical, thermal, and mechanical properties, making it a promising material for a wide range of applications in electronics, optoelectronics, energy storage, and more. With the increasing demand for graphene in various applications, large-scale and high-quality graphene production has become a significant challenge. While early methods of graphene production involved mechanical exfoliation, this method is limited in terms of scalability and yield. To meet the increasing demand for large-scale production of graphene, various methods have been developed in recent years, including chemical vapor precipitation, epitaxial crystal growth, graphene oxide reduction and solvent exfoliation and so on. This study aims to introduce several existing methods for the mass production of graphene with high quality and analyzes the advantages and disadvantage involve thereof. The findings in this paper may provide a valuable reference for the industrial-scale production of graphene.