{"title":"碳基材料与金属氧化物材料协同集成用于增强电化学储能的 EDLC 和伪电容综述","authors":"Honghan Li","doi":"10.54254/2755-2721/61/20240968","DOIUrl":null,"url":null,"abstract":"This paper provides a comprehensive analysis of the recent advancements in electrochemical double-layer capacitors (EDLCs) and pseudocapacitance, emphasizing the pivotal role of carbon-based materials, metal oxides, conducting polymers, and composites in augmenting the energy storage landscape. Through a systematic collection of electrochemical performance metrics, we elucidate the inherent advantages of these materials, such as superior electrical conductivity, enhanced surface area, and chemical robustness, which are instrumental in the development of next-generation supercapacitors. We discuss the integration of novel materials like reduced graphene oxide/hexagonal boron nitride composites, carbon onions, and various metal oxides that contribute to a significant increase in energy density and cycling stability. This work also highlights innovative fabrication techniques and synthesis methodologies that have resulted in electrodes with remarkable performance enhancements. Furthermore, the exploration of synergistic effects between different materials has led to hybrid structures that exhibit improved capacitive properties and operational efficiency.","PeriodicalId":350976,"journal":{"name":"Applied and Computational Engineering","volume":" 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A review of EDLC and pseudocapacitance with synergistic integration of carbon-based and metal oxide materials for enhanced electrochemical energy storage\",\"authors\":\"Honghan Li\",\"doi\":\"10.54254/2755-2721/61/20240968\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper provides a comprehensive analysis of the recent advancements in electrochemical double-layer capacitors (EDLCs) and pseudocapacitance, emphasizing the pivotal role of carbon-based materials, metal oxides, conducting polymers, and composites in augmenting the energy storage landscape. Through a systematic collection of electrochemical performance metrics, we elucidate the inherent advantages of these materials, such as superior electrical conductivity, enhanced surface area, and chemical robustness, which are instrumental in the development of next-generation supercapacitors. We discuss the integration of novel materials like reduced graphene oxide/hexagonal boron nitride composites, carbon onions, and various metal oxides that contribute to a significant increase in energy density and cycling stability. This work also highlights innovative fabrication techniques and synthesis methodologies that have resulted in electrodes with remarkable performance enhancements. Furthermore, the exploration of synergistic effects between different materials has led to hybrid structures that exhibit improved capacitive properties and operational efficiency.\",\"PeriodicalId\":350976,\"journal\":{\"name\":\"Applied and Computational Engineering\",\"volume\":\" 8\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied and Computational Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54254/2755-2721/61/20240968\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54254/2755-2721/61/20240968","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A review of EDLC and pseudocapacitance with synergistic integration of carbon-based and metal oxide materials for enhanced electrochemical energy storage
This paper provides a comprehensive analysis of the recent advancements in electrochemical double-layer capacitors (EDLCs) and pseudocapacitance, emphasizing the pivotal role of carbon-based materials, metal oxides, conducting polymers, and composites in augmenting the energy storage landscape. Through a systematic collection of electrochemical performance metrics, we elucidate the inherent advantages of these materials, such as superior electrical conductivity, enhanced surface area, and chemical robustness, which are instrumental in the development of next-generation supercapacitors. We discuss the integration of novel materials like reduced graphene oxide/hexagonal boron nitride composites, carbon onions, and various metal oxides that contribute to a significant increase in energy density and cycling stability. This work also highlights innovative fabrication techniques and synthesis methodologies that have resulted in electrodes with remarkable performance enhancements. Furthermore, the exploration of synergistic effects between different materials has led to hybrid structures that exhibit improved capacitive properties and operational efficiency.