{"title":"微流体进化与表面功能化:增强重金属离子检测的途径","authors":"Zhejun Xu, Arun Jaiswal, Xiaochen Liu, Zhenxu Yang, Qiankun Yin, Kien Voon Kong, Ken-Tye Yong","doi":"10.1002/adsr.202400008","DOIUrl":null,"url":null,"abstract":"<p>This review delves into the significant advancements in microfluidic technology since 2017, highlighting its critical role in shrinking device sizes and integrating advanced surface functionalization techniques. It showcases how microfluidics, an interdisciplinary field, has revolutionized fluid manipulation on a microscale, enabling the creation of cost-effective, portable devices for on-the-spot analyses, like heavy metal ion detection. From its early days rooted in ancient observations to cutting-edge uses of materials like silicon, glass, polydimethylsiloxane (PDMS), and paper, this review charts microfluidics’ dynamic evolution. It emphasizes the transformative impact of surface functionalization methods, including silanization and plasma treatments, in enhancing device materials' performance. Moreover, this review anticipates the exciting convergence of microfluidics with emerging technologies like droplet microfluidics and three-dimensional (3D) printing, alongside nanotechnology, forecasting a future of sophisticated analytical tools, point-of-care diagnostics, and improved detection systems. It acknowledges the hurdles in scaling production and achieving universal reliability and standardization. This review highlights the transformative impact of microfluidic technology on diagnostics and environmental surveillance, emphasizing its utility in deploying compact sensors for comprehensive and concurrent evaluations of water quality.</p>","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":"3 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202400008","citationCount":"0","resultStr":"{\"title\":\"Microfluidics Evolution and Surface Functionalization: A Pathway to Enhanced Heavy Metal Ion Detection\",\"authors\":\"Zhejun Xu, Arun Jaiswal, Xiaochen Liu, Zhenxu Yang, Qiankun Yin, Kien Voon Kong, Ken-Tye Yong\",\"doi\":\"10.1002/adsr.202400008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This review delves into the significant advancements in microfluidic technology since 2017, highlighting its critical role in shrinking device sizes and integrating advanced surface functionalization techniques. It showcases how microfluidics, an interdisciplinary field, has revolutionized fluid manipulation on a microscale, enabling the creation of cost-effective, portable devices for on-the-spot analyses, like heavy metal ion detection. From its early days rooted in ancient observations to cutting-edge uses of materials like silicon, glass, polydimethylsiloxane (PDMS), and paper, this review charts microfluidics’ dynamic evolution. It emphasizes the transformative impact of surface functionalization methods, including silanization and plasma treatments, in enhancing device materials' performance. Moreover, this review anticipates the exciting convergence of microfluidics with emerging technologies like droplet microfluidics and three-dimensional (3D) printing, alongside nanotechnology, forecasting a future of sophisticated analytical tools, point-of-care diagnostics, and improved detection systems. It acknowledges the hurdles in scaling production and achieving universal reliability and standardization. This review highlights the transformative impact of microfluidic technology on diagnostics and environmental surveillance, emphasizing its utility in deploying compact sensors for comprehensive and concurrent evaluations of water quality.</p>\",\"PeriodicalId\":100037,\"journal\":{\"name\":\"Advanced Sensor Research\",\"volume\":\"3 8\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202400008\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Sensor Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adsr.202400008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Sensor Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adsr.202400008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Microfluidics Evolution and Surface Functionalization: A Pathway to Enhanced Heavy Metal Ion Detection
This review delves into the significant advancements in microfluidic technology since 2017, highlighting its critical role in shrinking device sizes and integrating advanced surface functionalization techniques. It showcases how microfluidics, an interdisciplinary field, has revolutionized fluid manipulation on a microscale, enabling the creation of cost-effective, portable devices for on-the-spot analyses, like heavy metal ion detection. From its early days rooted in ancient observations to cutting-edge uses of materials like silicon, glass, polydimethylsiloxane (PDMS), and paper, this review charts microfluidics’ dynamic evolution. It emphasizes the transformative impact of surface functionalization methods, including silanization and plasma treatments, in enhancing device materials' performance. Moreover, this review anticipates the exciting convergence of microfluidics with emerging technologies like droplet microfluidics and three-dimensional (3D) printing, alongside nanotechnology, forecasting a future of sophisticated analytical tools, point-of-care diagnostics, and improved detection systems. It acknowledges the hurdles in scaling production and achieving universal reliability and standardization. This review highlights the transformative impact of microfluidic technology on diagnostics and environmental surveillance, emphasizing its utility in deploying compact sensors for comprehensive and concurrent evaluations of water quality.