双组分热塑性聚氨酯纤维与导电芯接触:数据采集和电特性分析方法

Fibers Pub Date : 2024-05-08 DOI:10.3390/fib12050041
J. Ortega, Felix Krooß, Yuwei Stefan Li, Thomas Gries
{"title":"双组分热塑性聚氨酯纤维与导电芯接触:数据采集和电特性分析方法","authors":"J. Ortega, Felix Krooß, Yuwei Stefan Li, Thomas Gries","doi":"10.3390/fib12050041","DOIUrl":null,"url":null,"abstract":"With the megatrend of digitalization, the demand for sensors in previously difficult-to-access scenarios is increasing. Filament-shaped sensors (FSS) are ideal for this demand, especially in applications in which the monitoring of textile structures is the focus. Electrically conductive bicomponent filaments based on thermoplastic polyurethane (TPU) and doped with carbon nanotubes (CNTs) offer great potential due to their flexible mechanical properties. Through the core-conducting, bicomponent structure, the sensing material is protected from environmental factors such as surrounding conductive materials and external moisture. The insulating material, however, simultaneously complicates the contacting method in order to measure sensing changes in the conductive core. In this work, laser cutting is employed as a technology in order to expose the conductive core of the filaments. The filament is then coated with silver and mechanically crimped, providing both a conductive interface for the data acquisition device as well as a protective layer. Laser parameters (power 20–100 W and speed 5–50 mm/s) are investigated to identify the parameters with the best cutting properties for which the filaments are analyzed visually and electrically. This work provides a robust and reproducible method for contacting core-conducting TPU filaments for strain-sensing applications. This study shows that while the choice of laser parameter influences the morphology of the cut surface, its impact on the resulting linear resistivity is negligible.","PeriodicalId":503983,"journal":{"name":"Fibers","volume":"184 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Contacting of Bicomponent TPU-Fibers with a Conductive Core: A Method for Data Acquisition and Analysis of the Electrical Properties\",\"authors\":\"J. Ortega, Felix Krooß, Yuwei Stefan Li, Thomas Gries\",\"doi\":\"10.3390/fib12050041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the megatrend of digitalization, the demand for sensors in previously difficult-to-access scenarios is increasing. Filament-shaped sensors (FSS) are ideal for this demand, especially in applications in which the monitoring of textile structures is the focus. Electrically conductive bicomponent filaments based on thermoplastic polyurethane (TPU) and doped with carbon nanotubes (CNTs) offer great potential due to their flexible mechanical properties. Through the core-conducting, bicomponent structure, the sensing material is protected from environmental factors such as surrounding conductive materials and external moisture. The insulating material, however, simultaneously complicates the contacting method in order to measure sensing changes in the conductive core. In this work, laser cutting is employed as a technology in order to expose the conductive core of the filaments. The filament is then coated with silver and mechanically crimped, providing both a conductive interface for the data acquisition device as well as a protective layer. Laser parameters (power 20–100 W and speed 5–50 mm/s) are investigated to identify the parameters with the best cutting properties for which the filaments are analyzed visually and electrically. This work provides a robust and reproducible method for contacting core-conducting TPU filaments for strain-sensing applications. This study shows that while the choice of laser parameter influences the morphology of the cut surface, its impact on the resulting linear resistivity is negligible.\",\"PeriodicalId\":503983,\"journal\":{\"name\":\"Fibers\",\"volume\":\"184 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fibers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/fib12050041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fibers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fib12050041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着数字化大趋势的发展,以往难以接近的场景对传感器的需求也在不断增加。丝状传感器(FSS)正是满足这一需求的理想选择,尤其是在重点监控纺织结构的应用中。基于热塑性聚氨酯(TPU)和掺杂碳纳米管(CNT)的导电双组分丝具有柔韧的机械性能,因此具有巨大的潜力。通过核心导电双组分结构,传感材料可免受周围导电材料和外部湿气等环境因素的影响。然而,绝缘材料同时也使测量导电核心传感变化的接触方法变得复杂。在这项工作中,采用了激光切割技术,以暴露灯丝的导电核心。然后在灯丝上涂上银并进行机械压接,为数据采集设备提供一个导电界面和保护层。对激光参数(功率 20-100 W,速度 5-50 mm/s)进行研究,以确定具有最佳切割性能的参数,并对灯丝进行视觉和电学分析。这项工作为应变传感应用中接触核心导电热塑性聚氨酯长丝提供了一种稳健且可重复的方法。这项研究表明,虽然激光参数的选择会影响切割表面的形态,但其对所产生的线性电阻率的影响可以忽略不计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Contacting of Bicomponent TPU-Fibers with a Conductive Core: A Method for Data Acquisition and Analysis of the Electrical Properties
With the megatrend of digitalization, the demand for sensors in previously difficult-to-access scenarios is increasing. Filament-shaped sensors (FSS) are ideal for this demand, especially in applications in which the monitoring of textile structures is the focus. Electrically conductive bicomponent filaments based on thermoplastic polyurethane (TPU) and doped with carbon nanotubes (CNTs) offer great potential due to their flexible mechanical properties. Through the core-conducting, bicomponent structure, the sensing material is protected from environmental factors such as surrounding conductive materials and external moisture. The insulating material, however, simultaneously complicates the contacting method in order to measure sensing changes in the conductive core. In this work, laser cutting is employed as a technology in order to expose the conductive core of the filaments. The filament is then coated with silver and mechanically crimped, providing both a conductive interface for the data acquisition device as well as a protective layer. Laser parameters (power 20–100 W and speed 5–50 mm/s) are investigated to identify the parameters with the best cutting properties for which the filaments are analyzed visually and electrically. This work provides a robust and reproducible method for contacting core-conducting TPU filaments for strain-sensing applications. This study shows that while the choice of laser parameter influences the morphology of the cut surface, its impact on the resulting linear resistivity is negligible.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Coloristic Properties of Biodegradable Fibers Hydrothermal Aging and Humidity Exposure of Carbon and Basalt Fibers and Life Time Prediction Natural Fiber-Reinforced Mycelium Composite for Innovative and Sustainable Construction Materials Anisotropy and Fiber Orientation: A Key Player in the Lateral Imbibition of Cellulose Paper Optimizing Synergistic Silica–Zinc Oxide Coating for Enhanced Flammability Resistance in Cotton Protective Clothing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1