通过药片和具有生理意义的溶解介质预测磺胺甲噁唑和三甲氧苄嘧啶的血浆水平

Q2 Pharmacology, Toxicology and Pharmaceutics International Journal of Applied Pharmaceutics Pub Date : 2024-05-07 DOI:10.22159/ijap.2024v16i3.50409
Jose Manuel RIOS-RODRIGUEZ, Felipe Dino REYES-RAMIREZ, J. C. RUIZ-SEGURA, J. R. MEDINA-LÓPEZ
{"title":"通过药片和具有生理意义的溶解介质预测磺胺甲噁唑和三甲氧苄嘧啶的血浆水平","authors":"Jose Manuel RIOS-RODRIGUEZ, Felipe Dino REYES-RAMIREZ, J. C. RUIZ-SEGURA, J. R. MEDINA-LÓPEZ","doi":"10.22159/ijap.2024v16i3.50409","DOIUrl":null,"url":null,"abstract":"Objective: To estimate plasma concentrations-time profiles of Sulfamethoxazole (SMZ) and Trimethoprim (TMP) from fixed-dose combination formulations through in vitro data of dissolution media of physiological relevance and a convolution model.\nMethods: Dissolution profiles of SMZ/TMP tablets (400/80 mg) were obtained with USP paddle apparatus at 100 rpm and 900 ml of 0.1 N HCl, pH 4.5 acetate buffer, and pH 6.8 phosphate buffer. The reference drug product and two generic formulations were tested. Drugs were quantified by a derivative method. Dissolution profiles were compared with model-dependent and independent methods. SMZ/TMP plasma levels were simulated with dissolution data and published in vivo information. Percent of prediction error (PE) for peak plasma concentration (Cmax) and area under the curve from zero time to infinity (AUC0-inf) at each condition were calculated.\nResults: In all used conditions, similar dissolution profiles were found excepting for TMP at pH 1.2 (f2<50). The in vitro release performance for reference and generic formulations was explained by the Weibull function only for SMZ at pH 6.8 and TMP at pH 4.5. Values of PE>19% for both generic formulations were found with TMP at pH 1.2.\nConclusion: Significant differences in TMP dissolution profiles of generic formulations at pH 1.2 reflect the subsequent differences found in predicted Cmax and AUC0-inf.","PeriodicalId":13737,"journal":{"name":"International Journal of Applied Pharmaceutics","volume":"62 s286","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PREDICTION OF SULFAMETHOXAZOLE AND TRIMETHOPRIM PLASMA LEVELS FROM TABLETS AND DISSOLUTION MEDIA OF PHYSIOLOGICAL RELEVANCE\",\"authors\":\"Jose Manuel RIOS-RODRIGUEZ, Felipe Dino REYES-RAMIREZ, J. C. RUIZ-SEGURA, J. R. MEDINA-LÓPEZ\",\"doi\":\"10.22159/ijap.2024v16i3.50409\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Objective: To estimate plasma concentrations-time profiles of Sulfamethoxazole (SMZ) and Trimethoprim (TMP) from fixed-dose combination formulations through in vitro data of dissolution media of physiological relevance and a convolution model.\\nMethods: Dissolution profiles of SMZ/TMP tablets (400/80 mg) were obtained with USP paddle apparatus at 100 rpm and 900 ml of 0.1 N HCl, pH 4.5 acetate buffer, and pH 6.8 phosphate buffer. The reference drug product and two generic formulations were tested. Drugs were quantified by a derivative method. Dissolution profiles were compared with model-dependent and independent methods. SMZ/TMP plasma levels were simulated with dissolution data and published in vivo information. Percent of prediction error (PE) for peak plasma concentration (Cmax) and area under the curve from zero time to infinity (AUC0-inf) at each condition were calculated.\\nResults: In all used conditions, similar dissolution profiles were found excepting for TMP at pH 1.2 (f2<50). The in vitro release performance for reference and generic formulations was explained by the Weibull function only for SMZ at pH 6.8 and TMP at pH 4.5. Values of PE>19% for both generic formulations were found with TMP at pH 1.2.\\nConclusion: Significant differences in TMP dissolution profiles of generic formulations at pH 1.2 reflect the subsequent differences found in predicted Cmax and AUC0-inf.\",\"PeriodicalId\":13737,\"journal\":{\"name\":\"International Journal of Applied Pharmaceutics\",\"volume\":\"62 s286\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Pharmaceutics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22159/ijap.2024v16i3.50409\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Pharmaceutics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22159/ijap.2024v16i3.50409","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0

摘要

目的通过生理学相关溶解介质的体外数据和卷积模型,估计固定剂量复方制剂中磺胺甲噁唑(SMZ)和甲氧苄啶(TMP)的血浆浓度-时间曲线:采用美国药典(USP)桨式仪器,在 100 转/分和 900 毫升 0.1 N HCl、pH 4.5 乙酸缓冲液和 pH 6.8 磷酸盐缓冲液条件下,获得了 SMZ/TMP 片剂(400/80 毫克)的溶解曲线。对参比药品和两种普通制剂进行了测试。采用导数法对药物进行定量。用依赖模型法和独立方法对溶解曲线进行了比较。利用溶出数据和已公布的体内信息模拟了 SMZ/TMP 的血浆水平。计算了每种条件下血浆浓度峰值(Cmax)的预测误差百分比(PE)和从零时到无穷大的曲线下面积(AUC0-inf):结果:在所有使用条件下,均发现了相似的溶出曲线,但 pH 值为 1.2 的 TMP 除外(pH 值为 1.2 时,两种通用制剂的 TMP 溶出曲线均为 219%):结论:在 pH 值为 1.2 时,非专利制剂的 TMP 溶解曲线存在显著差异,这反映了预测 Cmax 和 AUC0-inf 的差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PREDICTION OF SULFAMETHOXAZOLE AND TRIMETHOPRIM PLASMA LEVELS FROM TABLETS AND DISSOLUTION MEDIA OF PHYSIOLOGICAL RELEVANCE
Objective: To estimate plasma concentrations-time profiles of Sulfamethoxazole (SMZ) and Trimethoprim (TMP) from fixed-dose combination formulations through in vitro data of dissolution media of physiological relevance and a convolution model. Methods: Dissolution profiles of SMZ/TMP tablets (400/80 mg) were obtained with USP paddle apparatus at 100 rpm and 900 ml of 0.1 N HCl, pH 4.5 acetate buffer, and pH 6.8 phosphate buffer. The reference drug product and two generic formulations were tested. Drugs were quantified by a derivative method. Dissolution profiles were compared with model-dependent and independent methods. SMZ/TMP plasma levels were simulated with dissolution data and published in vivo information. Percent of prediction error (PE) for peak plasma concentration (Cmax) and area under the curve from zero time to infinity (AUC0-inf) at each condition were calculated. Results: In all used conditions, similar dissolution profiles were found excepting for TMP at pH 1.2 (f2<50). The in vitro release performance for reference and generic formulations was explained by the Weibull function only for SMZ at pH 6.8 and TMP at pH 4.5. Values of PE>19% for both generic formulations were found with TMP at pH 1.2. Conclusion: Significant differences in TMP dissolution profiles of generic formulations at pH 1.2 reflect the subsequent differences found in predicted Cmax and AUC0-inf.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Applied Pharmaceutics
International Journal of Applied Pharmaceutics Pharmacology, Toxicology and Pharmaceutics-Pharmacology, Toxicology and Pharmaceutics (miscellaneous)
CiteScore
1.40
自引率
0.00%
发文量
219
期刊介绍: International Journal of Applied Pharmaceutics (Int J App Pharm) is a peer-reviewed, bimonthly (onward March 2017) open access journal devoted to the excellence and research in the pure pharmaceutics. This Journal publishes original research work that contributes significantly to further the scientific knowledge in conventional dosage forms, formulation development and characterization, controlled and novel drug delivery, biopharmaceutics, pharmacokinetics, molecular drug design, polymer-based drug delivery, nanotechnology, nanocarrier based drug delivery, novel routes and modes of delivery; responsive delivery systems, prodrug design, development and characterization of the targeted drug delivery systems, ligand carrier interactions etc. However, the other areas which are related to the pharmaceutics are also entertained includes physical pharmacy and API (active pharmaceutical ingredients) analysis. The Journal publishes original research work either as a Original Article or as a Short Communication. Review Articles on a current topic in the said fields are also considered for publication in the Journal.
期刊最新文献
DEVELOPMENT, OPTIMIZATION AND IN VITRO CHARACTERIZATION OF HALOPERIDOL NANOCRYSTALS USING 32 FACTORIAL DESIGN ANALYTICAL TECHNIQUES FOR DETERMINATION OF MIRABEGRON FROM BULK, PHARMACEUTICAL FORMULATION, AND BIOLOGICAL MATRICES: A CRITICAL REVIEW FORMULATION AND EVALUATION OF RED GINGER RHIZOME EXTRACT SOAP AS AN ANTIBACTERIAL THE APPLICATION OF BIOANALYTICAL METHOD OF TAMOXIFEN AND ITS ACTIVE METABOLITES FOR THERAPEUTIC DRUG MONITORING IN BREAST CANCER PATIENTS: A REVIEW RP-HPLC METHOD DEVELOPMENT AND VALIDATION FOR SIMULTANEOUS ESTIMATION OF CURCUMIN AND RESVERATROL IN NANO-MICELLE: DUAL DRUG DUAL FORM SIMULTANEOUS ESTIMATION
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1