Pub Date : 2024-05-07DOI: 10.22159/ijap.2024v16i3.50556
Iti Chauhan, Lubhan Singh
Objective: This study focuses on the development and validation of a sensitive, simple, accurate, precise and cost-effective Ultraviolet-Visible (UV) spectrophotometric method for the quantification of Linezolid, a widely used antibiotic in pharmaceutical formulations. Methods: The analysis utilized a solvent system comprising 80% water and 20% methanol (v/v). The absorbance of standard solutions was measured and a calibration curve was constructed. Various analytical performance parameters, including linearity, range, precision, accuracy, Limit of Detection (LOD), Limit of Quantification (LOQ) and ruggedness, were determined following the International Conference on Harmonization (ICH) Q2 (R1) guidelines. Results: The maximum absorption peak (λmax) of Linezolid was determined to be 251 nm in the selected medium. Beer-Lambert’s law was valid in the concentration range of 0.5–9 μg/ml, with a high correlation coefficient (R2) of 0.9955. The proposed method exhibited a recovery ranging from 99.08 to 100.37% with % Relative Standard Deviation (RSD) value consistently below 2%. Conclusion: The study findings confirm the accuracy, precision and reproducibility of the developed method. Additionally, it is characterized by its simplicity, affordability, and time efficiency. Thus, this method can be effectively employed for the quantification of Linezolid in lipid nanoparticles.
{"title":"DEVELOPMENT AND VALIDATION OF A SIMPLE AND COST-EFFECTIVE UV SPECTROPHOTOMETRIC METHOD FOR QUANTIFYING LINEZOLID","authors":"Iti Chauhan, Lubhan Singh","doi":"10.22159/ijap.2024v16i3.50556","DOIUrl":"https://doi.org/10.22159/ijap.2024v16i3.50556","url":null,"abstract":"Objective: This study focuses on the development and validation of a sensitive, simple, accurate, precise and cost-effective Ultraviolet-Visible (UV) spectrophotometric method for the quantification of Linezolid, a widely used antibiotic in pharmaceutical formulations.\u0000Methods: The analysis utilized a solvent system comprising 80% water and 20% methanol (v/v). The absorbance of standard solutions was measured and a calibration curve was constructed. Various analytical performance parameters, including linearity, range, precision, accuracy, Limit of Detection (LOD), Limit of Quantification (LOQ) and ruggedness, were determined following the International Conference on Harmonization (ICH) Q2 (R1) guidelines.\u0000Results: The maximum absorption peak (λmax) of Linezolid was determined to be 251 nm in the selected medium. Beer-Lambert’s law was valid in the concentration range of 0.5–9 μg/ml, with a high correlation coefficient (R2) of 0.9955. The proposed method exhibited a recovery ranging from 99.08 to 100.37% with % Relative Standard Deviation (RSD) value consistently below 2%.\u0000Conclusion: The study findings confirm the accuracy, precision and reproducibility of the developed method. Additionally, it is characterized by its simplicity, affordability, and time efficiency. Thus, this method can be effectively employed for the quantification of Linezolid in lipid nanoparticles.","PeriodicalId":13737,"journal":{"name":"International Journal of Applied Pharmaceutics","volume":"18 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141004183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-07DOI: 10.22159/ijap.2024v16i3.50023
Koppula Jayanthi, Syed Suhaib Ahmed, Mohd Abdul Baqi, Mohammed AFZAL AZAM
Objective: Thymidylate kinase (TMK) plays a crucial role in bacterial DNA synthesis by catalyzing the phosphorylation of deoxythymidine monophosphate (dTMP) to form deoxythymidine diphosphate (dTDP). Consequently, this enzyme emerges as a promising target for developing novel antibacterial drugs. However, no antibiotics were reported for this target, especially active against Staphylococcus aureus thymidylate kinase. Methods: Benzylidene acetamide-based ligands were examined for their potency using the in silico method. These novel ligand structures were built using ChemDraw software. The protein was retrieved from the Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB) website. The molecular docking and binding free energy calculation by prime Molecular Mechanics in Generalized Bond Surface Area (MM-GBSA) was performed for selected ligands. A 100 ns molecular dynamic simulation was also performed to assess the stability of the potential ligand as TMK inhibitors. Results: All ten molecules have shown good glide scores and hydrophobic and hydrogen hydrophobic hydrogen bonding interactions with Arg48, Arg36, and π-π stacking Phe66 in the TMK enzyme (PDB: 4HLC). Among them, N-(2-ethylphenyl)-2-(4-((4-nitrobenzylidene) amino) phenoxy) acetamide molecule had high XP-docking scores of-3.27 kcal/mol based on extra-precision data. Prime Molecular Mechanics in Generalized Bond Surface Area study (MM-GBSA) studies also showed promising binding affinities that are ΔBind (-65.80), ΔLipo (-28.55), and ΔVdW (-55.10). Phe66 amino acid residue maintained continuous connections with the ligand during MD simulation. This ligand showed promising binding affinity with the SaTMK target. Conclusion: The N-(2-ethylphenyl)-2-(4-((4-nitrobenzylidene) amino) phenoxy) acetamide ligand at the position of the benzene ring displayed nitrogen and oxygen group, thus indicating good potential activity as the inhibitor of TMK to treat antibacterial agents.
{"title":"MOLECULAR DOCKING DYNAMICS OF SELECTED BENZYLIDENE AMINO PHENYL ACETAMIDES AS TMK INHIBITORS USING HIGH THROUGHPUT VIRTUAL SCREENING (HTVS)","authors":"Koppula Jayanthi, Syed Suhaib Ahmed, Mohd Abdul Baqi, Mohammed AFZAL AZAM","doi":"10.22159/ijap.2024v16i3.50023","DOIUrl":"https://doi.org/10.22159/ijap.2024v16i3.50023","url":null,"abstract":"Objective: Thymidylate kinase (TMK) plays a crucial role in bacterial DNA synthesis by catalyzing the phosphorylation of deoxythymidine monophosphate (dTMP) to form deoxythymidine diphosphate (dTDP). Consequently, this enzyme emerges as a promising target for developing novel antibacterial drugs. However, no antibiotics were reported for this target, especially active against Staphylococcus aureus thymidylate kinase.\u0000Methods: Benzylidene acetamide-based ligands were examined for their potency using the in silico method. These novel ligand structures were built using ChemDraw software. The protein was retrieved from the Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB) website. The molecular docking and binding free energy calculation by prime Molecular Mechanics in Generalized Bond Surface Area (MM-GBSA) was performed for selected ligands. A 100 ns molecular dynamic simulation was also performed to assess the stability of the potential ligand as TMK inhibitors.\u0000Results: All ten molecules have shown good glide scores and hydrophobic and hydrogen hydrophobic hydrogen bonding interactions with Arg48, Arg36, and π-π stacking Phe66 in the TMK enzyme (PDB: 4HLC). Among them, N-(2-ethylphenyl)-2-(4-((4-nitrobenzylidene) amino) phenoxy) acetamide molecule had high XP-docking scores of-3.27 kcal/mol based on extra-precision data. Prime Molecular Mechanics in Generalized Bond Surface Area study (MM-GBSA) studies also showed promising binding affinities that are ΔBind (-65.80), ΔLipo (-28.55), and ΔVdW (-55.10). Phe66 amino acid residue maintained continuous connections with the ligand during MD simulation. This ligand showed promising binding affinity with the SaTMK target.\u0000Conclusion: The N-(2-ethylphenyl)-2-(4-((4-nitrobenzylidene) amino) phenoxy) acetamide ligand at the position of the benzene ring displayed nitrogen and oxygen group, thus indicating good potential activity as the inhibitor of TMK to treat antibacterial agents.","PeriodicalId":13737,"journal":{"name":"International Journal of Applied Pharmaceutics","volume":"23 27","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141004815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-07DOI: 10.22159/ijap.2024v16i3.49581
Shivani Makhijani
The process of developing new drugs is known for being drawn-out, expensive, risky, and having a high attrition rate. Drug repurposing has grown in favor recently as a practical way to speed up the development of new medicines while reducing the costs and time constraints associated with traditional drug research. The description of this study's pharmacological repurposing highlights its promise as a practical method to fill gaps in the market and revitalize treatment options. This review provides a full analysis of the ground-breaking tactic of repurposing medications, supported by numerous cases that demonstrate its revolutionary potential. We examine instances of repurposed drugs, such as thalidomide, sildenafil, and metformin, that have performed astoundingly well in a range of therapeutic settings despite being used outside of their original scope. Overall, the paper's main goal-to study pharmacological repurposing as a potentially successful strategy for revitalizing treatments-is, succinctly summarized in this abstract. It highlights the potential benefits of this approach and how it might be used in the pharmaceutical industry's ongoing quest for more inexpensive and effective medicine development.
{"title":"REVITALIZING THERAPEUTICS: DRUG REPURPOSING AS A COST-EFFECTIVE STRATEGY FOR DRUG DEVELOPMENT","authors":"Shivani Makhijani","doi":"10.22159/ijap.2024v16i3.49581","DOIUrl":"https://doi.org/10.22159/ijap.2024v16i3.49581","url":null,"abstract":"The process of developing new drugs is known for being drawn-out, expensive, risky, and having a high attrition rate. Drug repurposing has grown in favor recently as a practical way to speed up the development of new medicines while reducing the costs and time constraints associated with traditional drug research. The description of this study's pharmacological repurposing highlights its promise as a practical method to fill gaps in the market and revitalize treatment options. This review provides a full analysis of the ground-breaking tactic of repurposing medications, supported by numerous cases that demonstrate its revolutionary potential. We examine instances of repurposed drugs, such as thalidomide, sildenafil, and metformin, that have performed astoundingly well in a range of therapeutic settings despite being used outside of their original scope.\u0000Overall, the paper's main goal-to study pharmacological repurposing as a potentially successful strategy for revitalizing treatments-is, succinctly summarized in this abstract. It highlights the potential benefits of this approach and how it might be used in the pharmaceutical industry's ongoing quest for more inexpensive and effective medicine development.","PeriodicalId":13737,"journal":{"name":"International Journal of Applied Pharmaceutics","volume":"92 12","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141004210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-07DOI: 10.22159/ijap.2024v16i3.49856
Sofia Rahmi, Julia Reveny, Anayanti Arianto, P. Sitorus
Objective: This study aimed to develop and assess ethosome preparation using extracts derived from the leaves of Chromolaena odorata. Methods: The study started by obtaining Chromolaena odorata leaf extracts. Furthermore, Ethosome formulations were produced using a thermal technique. Ethosome variants were created, each with distinct compositions: Formulation F1, containing 10 ml of ethanol without the extract; Formulation F2, consisting of 0.5 grams of the extract mixed with 10 ml of ethanol; Formulation F3, combining 1 gram of the extract with 20 ml of ethanol; and Formulation F4, incorporating 1.5 grams of the extract with 30 ml of ethanol. The ethosomal systems were thoroughly characterized using various analytical techniques, such as organoleptic analysis, quantification of particle dimensions, zeta potential evaluation, pH metric analysis, transmission electron microscopy (TEM) imaging, and in vitro permeability assessment using the Franz Diffusion Cell apparatus. Results: The findings indicated that the optimized F4 formulation showed 161.2±32.0 nm particle size measurement and a+34.33±0.58 mV zeta potential. All formula possess a pH range of 4.5-6.5, within which the skin can acclimate to preparations. It is evident from all formulations that the pH decreased after the addition of the extract at an acidic pH of 4.11. Following the 12-week storage period, the pH of all treatments exhibited a modest reduction; however, it remained within the acceptable range for skin pH. Furthermore, the F4 formula also had a higher level of penetration activity. Conclusion: The optimized ethosomal formulations of Chromolaena odorata have promising applications in enhancing the permeability and efficacy of plant-derived therapeutic agents.
{"title":"FORMULATION DEVELOPMENT AND IN VITRO PENETRATION TEST OF ETHOSOME OF CHROMOLAENA ODORATA LEAVES EXTRACT","authors":"Sofia Rahmi, Julia Reveny, Anayanti Arianto, P. Sitorus","doi":"10.22159/ijap.2024v16i3.49856","DOIUrl":"https://doi.org/10.22159/ijap.2024v16i3.49856","url":null,"abstract":"Objective: This study aimed to develop and assess ethosome preparation using extracts derived from the leaves of Chromolaena odorata.\u0000Methods: The study started by obtaining Chromolaena odorata leaf extracts. Furthermore, Ethosome formulations were produced using a thermal technique. Ethosome variants were created, each with distinct compositions: Formulation F1, containing 10 ml of ethanol without the extract; Formulation F2, consisting of 0.5 grams of the extract mixed with 10 ml of ethanol; Formulation F3, combining 1 gram of the extract with 20 ml of ethanol; and Formulation F4, incorporating 1.5 grams of the extract with 30 ml of ethanol. The ethosomal systems were thoroughly characterized using various analytical techniques, such as organoleptic analysis, quantification of particle dimensions, zeta potential evaluation, pH metric analysis, transmission electron microscopy (TEM) imaging, and in vitro permeability assessment using the Franz Diffusion Cell apparatus.\u0000Results: The findings indicated that the optimized F4 formulation showed 161.2±32.0 nm particle size measurement and a+34.33±0.58 mV zeta potential. All formula possess a pH range of 4.5-6.5, within which the skin can acclimate to preparations. It is evident from all formulations that the pH decreased after the addition of the extract at an acidic pH of 4.11. Following the 12-week storage period, the pH of all treatments exhibited a modest reduction; however, it remained within the acceptable range for skin pH. Furthermore, the F4 formula also had a higher level of penetration activity.\u0000Conclusion: The optimized ethosomal formulations of Chromolaena odorata have promising applications in enhancing the permeability and efficacy of plant-derived therapeutic agents.","PeriodicalId":13737,"journal":{"name":"International Journal of Applied Pharmaceutics","volume":"138 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141002649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-07DOI: 10.22159/ijap.2024v16i3.50344
Rishu Yadav, Narendra Kumar Pandey, Rajiv Kukkar
Objective: The aim of this research work was to prepare a topical emulgel based dosage form incorporated with vitamin D-3 and silver nanoparticles to reduce the wound healing time in any kind of wound. Methods: Central Composite Design (CCD) was applied for the optimization of emulgel by using Design expert software. Three responses (pH, viscosity, and in vitro drug release) and two factors (Carbopol concentration and stirring duration) were chosen, and Statistical Analysis of Variance (ANOVA) revealed that all the factors were significantly affecting the responses. Silver Nanoparticles (SNPs) was prepared with Green Tea Extract (GTE) and evaluated for particle size, Poly Dispersity Index (PDI), zeta potential and Fourier Transform Infra-red (FTIR) spectroscopy and revealed that SNPs of desired range and stability have been synthesized. Here excision wound model was used to evaluate the wound healing activity of formulation in vivo. Results: Maximum in vitro release 88.2±2.1 has shown by the optimized formulation F13, pH and viscosity were also found in optimum range i.e., 6.2±0.4 and 1672±33 respectively, followed by Korsmeyer and Peppas model. Total eight groups were designed for animal study and silver sulphadiazine was used as marketed formulation. F13 formulation was further evaluated for in vivo data, it was revealed that emulgel loaded with high dose of vitamin D-3 along with silver nanoparticles has shown 100.5±1.7% wound contraction, while marketed formulation has shown 103.7±1.1% wound contraction, which was much similar with test formulation. Cytotoxic cell study was done using assay on chicken egg, formulation has not shown any cytotoxic behaviour like haemolysis and cell damage on chick embryo’s blood vessels. Accelerated stability study of the optimized formulation was also performed to check whether the formulation was stable or not and it was revealed that optimized formulation was found stable for the period of six months. Conclusion: It was revealed that emulgel loaded with high dose of vitamin D-3 and SNPs found suitable to accelerate wound healing and showed almost similar response in wound contraction on comparison with marketed formulation. This emulgel promised to controlled the delivery of the drug for the longer duration.
{"title":"DESIGN, DEVELOPMENT AND IMPROVEMENT OF AN EMULGEL CONTAINING SILVER NANOPARTICLES AND VITAMIN D-3 FOR ITS POTENTIAL TO ACCELERATE THE HEALING OF WOUND","authors":"Rishu Yadav, Narendra Kumar Pandey, Rajiv Kukkar","doi":"10.22159/ijap.2024v16i3.50344","DOIUrl":"https://doi.org/10.22159/ijap.2024v16i3.50344","url":null,"abstract":"Objective: The aim of this research work was to prepare a topical emulgel based dosage form incorporated with vitamin D-3 and silver nanoparticles to reduce the wound healing time in any kind of wound.\u0000Methods: Central Composite Design (CCD) was applied for the optimization of emulgel by using Design expert software. Three responses (pH, viscosity, and in vitro drug release) and two factors (Carbopol concentration and stirring duration) were chosen, and Statistical Analysis of Variance (ANOVA) revealed that all the factors were significantly affecting the responses. Silver Nanoparticles (SNPs) was prepared with Green Tea Extract (GTE) and evaluated for particle size, Poly Dispersity Index (PDI), zeta potential and Fourier Transform Infra-red (FTIR) spectroscopy and revealed that SNPs of desired range and stability have been synthesized. Here excision wound model was used to evaluate the wound healing activity of formulation in vivo.\u0000Results: Maximum in vitro release 88.2±2.1 has shown by the optimized formulation F13, pH and viscosity were also found in optimum range i.e., 6.2±0.4 and 1672±33 respectively, followed by Korsmeyer and Peppas model. Total eight groups were designed for animal study and silver sulphadiazine was used as marketed formulation. F13 formulation was further evaluated for in vivo data, it was revealed that emulgel loaded with high dose of vitamin D-3 along with silver nanoparticles has shown 100.5±1.7% wound contraction, while marketed formulation has shown 103.7±1.1% wound contraction, which was much similar with test formulation. Cytotoxic cell study was done using assay on chicken egg, formulation has not shown any cytotoxic behaviour like haemolysis and cell damage on chick embryo’s blood vessels. Accelerated stability study of the optimized formulation was also performed to check whether the formulation was stable or not and it was revealed that optimized formulation was found stable for the period of six months.\u0000Conclusion: It was revealed that emulgel loaded with high dose of vitamin D-3 and SNPs found suitable to accelerate wound healing and showed almost similar response in wound contraction on comparison with marketed formulation. This emulgel promised to controlled the delivery of the drug for the longer duration.","PeriodicalId":13737,"journal":{"name":"International Journal of Applied Pharmaceutics","volume":"24 31","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141004850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-07DOI: 10.22159/ijap.2024v16i3.50276
SK Mosiur Rahaman, Atanu Chandra, Ranu Biswas
Objective: To develop a reverse-phase high-performance liquid chromatography (RP-HPLC) method for simultaneous estimation of conjugated form of Curcumin (CCMN) and free form of Resveratrol (RSV) in nano-micelle. Methods: The conjugation of lipophilic CCMN and hydrophilic Chitosan (CHT) through succinyl linker produce amphipathic molecule that can self-assemble into RSV solution to form micelle. Here RSV exists in micelle core as free form and CCMN with micelle backbone as conjugated form. So it required to estimate conjugated drug and free drug simultaneously from nano-micelle. We developed a RP-HPLC method, utilized C18 column, follow flow rate of mobile phase 1.0 ml/min, which consist of acetonitrile with water (0.5% Ortho Phosphoric acid, pH 4.6) in the ratio of 1:1 for 20 min. Injection volume was 10μl and column temperature 25 ℃. Isosbestic detection of both drugs was at 254 nm. Results: The retention time of RSV and CCMN were at 8.15 min and 11.41 min respectively, completely distinguished sharp peak of CCMN and RSV developed with resolution 7.360±0.117, wide range of linearity with correlation coefficient value (R2) of CCMN and RSV were 0.99987 and 0.99992 respectively and recovery value of CCMN and RSV were 100.041±0.22 % and 100.041±0.21 % respectively. The RSD (relative standard deviation) for accuracy, precision and robustness of the method was found to be less than 2%. Conclusion: The develop method for simultaneous estimation of conjugated CCMN and free form of RSV in the nano-micelle formulation was consider to be accurate, precise, robust and sensitive.
{"title":"RP-HPLC METHOD DEVELOPMENT AND VALIDATION FOR SIMULTANEOUS ESTIMATION OF CURCUMIN AND RESVERATROL IN NANO-MICELLE: DUAL DRUG DUAL FORM SIMULTANEOUS ESTIMATION","authors":"SK Mosiur Rahaman, Atanu Chandra, Ranu Biswas","doi":"10.22159/ijap.2024v16i3.50276","DOIUrl":"https://doi.org/10.22159/ijap.2024v16i3.50276","url":null,"abstract":"Objective: To develop a reverse-phase high-performance liquid chromatography (RP-HPLC) method for simultaneous estimation of conjugated form of Curcumin (CCMN) and free form of Resveratrol (RSV) in nano-micelle.\u0000Methods: The conjugation of lipophilic CCMN and hydrophilic Chitosan (CHT) through succinyl linker produce amphipathic molecule that can self-assemble into RSV solution to form micelle. Here RSV exists in micelle core as free form and CCMN with micelle backbone as conjugated form. So it required to estimate conjugated drug and free drug simultaneously from nano-micelle. We developed a RP-HPLC method, utilized C18 column, follow flow rate of mobile phase 1.0 ml/min, which consist of acetonitrile with water (0.5% Ortho Phosphoric acid, pH 4.6) in the ratio of 1:1 for 20 min. Injection volume was 10μl and column temperature 25 ℃. Isosbestic detection of both drugs was at 254 nm.\u0000Results: The retention time of RSV and CCMN were at 8.15 min and 11.41 min respectively, completely distinguished sharp peak of CCMN and RSV developed with resolution 7.360±0.117, wide range of linearity with correlation coefficient value (R2) of CCMN and RSV were 0.99987 and 0.99992 respectively and recovery value of CCMN and RSV were 100.041±0.22 % and 100.041±0.21 % respectively. The RSD (relative standard deviation) for accuracy, precision and robustness of the method was found to be less than 2%.\u0000Conclusion: The develop method for simultaneous estimation of conjugated CCMN and free form of RSV in the nano-micelle formulation was consider to be accurate, precise, robust and sensitive.","PeriodicalId":13737,"journal":{"name":"International Journal of Applied Pharmaceutics","volume":"87 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141002257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-07DOI: 10.22159/ijap.2024v16i3.49622
Nur Illiyyin Akib, Sriwidodo, Adryan Fristiohady Lubis, Mery Dina SYNTIA SAMANI, Ahmad FAHMI NUR, Rina Andriani, A. Chaerunisaa
Objective: Microcrystalline cellulose (MCC) is an essential excipient in tablet formulation. Mostly MCC was obtained from wooden conifer stem fiber, therefore environment issues had been came up. Alternative sources for MCC which offer friendly conifer wood need to be explored. This study aimed to isolate and determine the characteristics of MCC originated from Sago (Metroxylon sago Rottb.) stem fibers as an promising alternative of MCC. Methods: MCC was prepared through pre-hydrolysis using an acetic acid solution, alkali heating using NaOH solution, and acid hydrolysis using nitric acid 0.3 N using three variations of heating temperature, namely 90, 95 and 100 °C. The characterization carried out were pharmaceutical grade, powder properties, FTIR analysis and powder morphology by SEM. Results: The yields obtained were 66.02; 65.53 and 65.08%, respectively. The characteristics of the MCC sample based on pharmaceutical grade quality were white to yellowish white powder, odorless, tasteless, insoluble in: ether, 96% alcohol, HCl 2N and NaOH 1N. The pH of the MCC suspension were 5.07-5.12, while moisture content were 3.67-4.17%, with loss on drying value as much as 0.37-0.4%, and ash content 1-2.17%. The value of permanganate number were 0.09-0.11, Hausner factor was between 1.05-1.25, and angle of repose were between 11.4-24.8°. Conclusion: Based on the results, it can be concluded that Sago is potent natural resource for MCC. The resulting MCC revealed physicochemical and characteristic of MCC, which almost similar to Avicel PH 102 as standard.
{"title":"DEVELOPMENT OF MYCROCRYSTALLINE CELLULOSE ORIGINATE FROM SAGO (METROXYLON SAGU) STEM BARK BY HYDROLISIS METHODE USING NITRIC ACID","authors":"Nur Illiyyin Akib, Sriwidodo, Adryan Fristiohady Lubis, Mery Dina SYNTIA SAMANI, Ahmad FAHMI NUR, Rina Andriani, A. Chaerunisaa","doi":"10.22159/ijap.2024v16i3.49622","DOIUrl":"https://doi.org/10.22159/ijap.2024v16i3.49622","url":null,"abstract":"Objective: Microcrystalline cellulose (MCC) is an essential excipient in tablet formulation. Mostly MCC was obtained from wooden conifer stem fiber, therefore environment issues had been came up. Alternative sources for MCC which offer friendly conifer wood need to be explored. This study aimed to isolate and determine the characteristics of MCC originated from Sago (Metroxylon sago Rottb.) stem fibers as an promising alternative of MCC.\u0000Methods: MCC was prepared through pre-hydrolysis using an acetic acid solution, alkali heating using NaOH solution, and acid hydrolysis using nitric acid 0.3 N using three variations of heating temperature, namely 90, 95 and 100 °C. The characterization carried out were pharmaceutical grade, powder properties, FTIR analysis and powder morphology by SEM.\u0000Results: The yields obtained were 66.02; 65.53 and 65.08%, respectively. The characteristics of the MCC sample based on pharmaceutical grade quality were white to yellowish white powder, odorless, tasteless, insoluble in: ether, 96% alcohol, HCl 2N and NaOH 1N. The pH of the MCC suspension were 5.07-5.12, while moisture content were 3.67-4.17%, with loss on drying value as much as 0.37-0.4%, and ash content 1-2.17%. The value of permanganate number were 0.09-0.11, Hausner factor was between 1.05-1.25, and angle of repose were between 11.4-24.8°.\u0000Conclusion: Based on the results, it can be concluded that Sago is potent natural resource for MCC. The resulting MCC revealed physicochemical and characteristic of MCC, which almost similar to Avicel PH 102 as standard.","PeriodicalId":13737,"journal":{"name":"International Journal of Applied Pharmaceutics","volume":"7 14","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141005064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-07DOI: 10.22159/ijap.2024v16i3.50601
Durgaramani Sivadasan
Liposomes have been the delivery of choice for the cancer targeting therapy for the last few decades. Since the 1990s, the development of sterically stabilized (stealth) liposomes has garnered interest for their long circulating half-life. PEGylated (Polyethylene Glycol) liposomes are most extensively studied for delivering cancer therapeutics in a sustained manner. Stealth liposomes are having a less intrinsic toxicity with higher efficacy in cancer treatment. There are numerous clinical trials on the liposomes in tackling cancer is evident for the better outcome of the delivery system. Stealth liposomes are extensively studied for their improved circulation time and better pharmacokinetic profile in cancer treatment. The steric hindrance of the stealth liposomes bypasses the reticuloendothelial system clearance. Further the ligands conjugation in the surface of the liposomes able to achieve better target to the cancer cells. The vascularization nature of the cancerous cells is readily making the liposomal delivery of the cancer drugs accumulate in the cancerous cells rather than healthy cells. There is an utmost need to understand the possible mechanism of stealth liposomes and the basic science behind the development of liposomal delivery system in advancing the cancer treatment with less toxicity. The present review addresses the various modalities of the liposomal development, liposome characterization, mechanism of PEGylated liposomes, the advancements and results of the liposomes in the treatment of various diseases, and the clinical trials and regulatory considerations of liposomal drug delivery system.
{"title":"AN UPDATED REVIEW OF STEALTH LIPOSOMES AND ITS ABILITY TO EVADE THE IMMUNE SYSTEM: A NEW FRONTIER IN CANCER CHEMOTHERAPY","authors":"Durgaramani Sivadasan","doi":"10.22159/ijap.2024v16i3.50601","DOIUrl":"https://doi.org/10.22159/ijap.2024v16i3.50601","url":null,"abstract":"Liposomes have been the delivery of choice for the cancer targeting therapy for the last few decades. Since the 1990s, the development of sterically stabilized (stealth) liposomes has garnered interest for their long circulating half-life. PEGylated (Polyethylene Glycol) liposomes are most extensively studied for delivering cancer therapeutics in a sustained manner. Stealth liposomes are having a less intrinsic toxicity with higher efficacy in cancer treatment. There are numerous clinical trials on the liposomes in tackling cancer is evident for the better outcome of the delivery system. Stealth liposomes are extensively studied for their improved circulation time and better pharmacokinetic profile in cancer treatment. The steric hindrance of the stealth liposomes bypasses the reticuloendothelial system clearance. Further the ligands conjugation in the surface of the liposomes able to achieve better target to the cancer cells. The vascularization nature of the cancerous cells is readily making the liposomal delivery of the cancer drugs accumulate in the cancerous cells rather than healthy cells. There is an utmost need to understand the possible mechanism of stealth liposomes and the basic science behind the development of liposomal delivery system in advancing the cancer treatment with less toxicity. The present review addresses the various modalities of the liposomal development, liposome characterization, mechanism of PEGylated liposomes, the advancements and results of the liposomes in the treatment of various diseases, and the clinical trials and regulatory considerations of liposomal drug delivery system.","PeriodicalId":13737,"journal":{"name":"International Journal of Applied Pharmaceutics","volume":"67 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141003942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-07DOI: 10.22159/ijap.2024v16i3.50481
Olga V. Levitskaya, T. Pleteneva, Daria A. Galkina, Nadezhda A. Khodorovich, E. Uspenskaya, Anton V. Syroeshkin
Objective: The aim of this study was to demonstrate that chiral switching should be recognized as a widespread phenomenon that extends beyond the production of pure enantiomeric drugs. Methods: To investigate the optical activity of substances from various chemical classes, enantiomers of chiral compounds (Sigma-Aldrich, USA) were chosen: valine and its racemic form (D-valine, L-valine, and racemic valine with optical purity ≥ 99%), L-ascorbic acid (content ≥ 99%), carbohydrates (D-glucose, D-galactose, L-galactose, contents ≥ 99.5%). Solutions were prepared using deuterium-depleted water (DDW–"light" water, D/H=4 ppm), natural deionized high-ohmic water (BD, D/H=140 ppm), and heavy water (99.9% D2O; Sigma-Aldrich). Optical activity was measured using the Atago POL-1/2 polarimeter. Results: One of the components in the racemic medication mixture can act as an inert agent, exhibit toxicity, or undergo undesirable biotransformation mechanisms, resulting in the formation of products with unknown properties. It has been established that a change in the deuterium/protium (D/H) ratio in water leads to a change in the equilibrium and kinetic characteristics of optically active compounds across various chemical classes, such as amino acids, carboxylic acids, and carbohydrates. An inequality was observed in the absolute values of the optical rotation of the L-and D-isomers of valine and galactose, depending on the D/H isotope ratio. The impact of chiral water clusters on optical rotation accounts for the sudden shift in the specific rotation of dilute solutions (less than 0.5%) of L-ascorbic acid in water, based on the D/H ratio. The influence of the isotopic composition of water was confirmed by studying the temperature-dependent mutarotation kinetics of D-glucose and L-and D-galactose in Arrhenius coordinates. The mutarotation process in natural high-resistivity water is characterized by an activation energy (Ea) of 40.8±1.4 kJ mol-1, while in deuterium-depleted water, Ea = 63.6±3.5 kJ mol-1. This results in a kinetic isotope effect for deuterium (KIED) of 1.6. Conclusion: Methodological approaches have been developed to control chiral switching based on the isotopic composition of water in vivo and in vitro. The study of changes in the optical activity of hierarchical structures in the human body, the influence of solvent properties on the mechanisms of optical rotation, as well as the use of KIED values, can be utilized to monitor various chiral transitions in vitro and living organisms.
{"title":"CHIRAL SWITCHING CONTROL OF PHARMACEUTICAL SUBSTANCES","authors":"Olga V. Levitskaya, T. Pleteneva, Daria A. Galkina, Nadezhda A. Khodorovich, E. Uspenskaya, Anton V. Syroeshkin","doi":"10.22159/ijap.2024v16i3.50481","DOIUrl":"https://doi.org/10.22159/ijap.2024v16i3.50481","url":null,"abstract":"Objective: The aim of this study was to demonstrate that chiral switching should be recognized as a widespread phenomenon that extends beyond the production of pure enantiomeric drugs.\u0000Methods: To investigate the optical activity of substances from various chemical classes, enantiomers of chiral compounds (Sigma-Aldrich, USA) were chosen: valine and its racemic form (D-valine, L-valine, and racemic valine with optical purity ≥ 99%), L-ascorbic acid (content ≥ 99%), carbohydrates (D-glucose, D-galactose, L-galactose, contents ≥ 99.5%). Solutions were prepared using deuterium-depleted water (DDW–\"light\" water, D/H=4 ppm), natural deionized high-ohmic water (BD, D/H=140 ppm), and heavy water (99.9% D2O; Sigma-Aldrich). Optical activity was measured using the Atago POL-1/2 polarimeter.\u0000Results: One of the components in the racemic medication mixture can act as an inert agent, exhibit toxicity, or undergo undesirable biotransformation mechanisms, resulting in the formation of products with unknown properties. It has been established that a change in the deuterium/protium (D/H) ratio in water leads to a change in the equilibrium and kinetic characteristics of optically active compounds across various chemical classes, such as amino acids, carboxylic acids, and carbohydrates. An inequality was observed in the absolute values of the optical rotation of the L-and D-isomers of valine and galactose, depending on the D/H isotope ratio. The impact of chiral water clusters on optical rotation accounts for the sudden shift in the specific rotation of dilute solutions (less than 0.5%) of L-ascorbic acid in water, based on the D/H ratio. The influence of the isotopic composition of water was confirmed by studying the temperature-dependent mutarotation kinetics of D-glucose and L-and D-galactose in Arrhenius coordinates.\u0000The mutarotation process in natural high-resistivity water is characterized by an activation energy (Ea) of 40.8±1.4 kJ mol-1, while in deuterium-depleted water, Ea = 63.6±3.5 kJ mol-1. This results in a kinetic isotope effect for deuterium (KIED) of 1.6.\u0000Conclusion: Methodological approaches have been developed to control chiral switching based on the isotopic composition of water in vivo and in vitro. The study of changes in the optical activity of hierarchical structures in the human body, the influence of solvent properties on the mechanisms of optical rotation, as well as the use of KIED values, can be utilized to monitor various chiral transitions in vitro and living organisms.","PeriodicalId":13737,"journal":{"name":"International Journal of Applied Pharmaceutics","volume":"11 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141004000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-07DOI: 10.22159/ijap.2024v16i3.50379
Alaa A. Hashim, Dhiya Altememy, Hussein Abdelamir Mohammad, Hasanain Shakir Mahmood, Radhwan M. HUSSEIN, Mahsa Rezaei, Pegah Khosravian
Objective: The main goal was to avoid all the problems associated with usual breast cancer treatment by using 6-thioguanine as a nanostructure lipid carrier (TG-NLCS). This was accomplished by administering an effective and targeted dose of 6-thioguanine (TG) to the tumour site using a long-lasting and biodegradable delivery system. Methods: A combination of heat homogenization and ultrasonication was used to implement the emulsification process. To obtain the optimal formulation, the prepared formulations were first assessed for particle size, Polydispersity Index (PDI), zeta potential, entrapment efficiency, and drug loading capacity. Additionally, a range of physicochemical characterization techniques were employed, including dissolution studies, melting point determination, Fourier-Transform Infrared (FTIR) spectroscopy, and Field Emission Scanning Electron Microscopy (FESEM), as well as cytotoxicity assessment of TG-NLCs in MCF-7 breast cancer cells. Results: The selected formula, TG03, showed a zeta potential of-13.5±0.27 mV and a particle size of 149±0.55 nm. This was further examined using a FESEM. In the in vitro drug release study, the formula demonstrated better-controlled drug release for 48 h in comparison to other formulations. In addition, the significant anti-proliferation activity of TG-NLCs against the MCF-7 breast cancer cell line. Conclusion: Nanostructured lipid carriers (NLCs) are one type of multifunctional nanoparticle that includes many combinations of lipids and medicines for various delivery routes.
{"title":"THE FORMULATION AND EVALUATION OF 6-THIOGUANINE AS A NANOSTRUCTURE LIPID CARRIER FOR THE TARGETED DELIVERY OF BREAST CANCER","authors":"Alaa A. Hashim, Dhiya Altememy, Hussein Abdelamir Mohammad, Hasanain Shakir Mahmood, Radhwan M. HUSSEIN, Mahsa Rezaei, Pegah Khosravian","doi":"10.22159/ijap.2024v16i3.50379","DOIUrl":"https://doi.org/10.22159/ijap.2024v16i3.50379","url":null,"abstract":"Objective: The main goal was to avoid all the problems associated with usual breast cancer treatment by using 6-thioguanine as a nanostructure lipid carrier (TG-NLCS). This was accomplished by administering an effective and targeted dose of 6-thioguanine (TG) to the tumour site using a long-lasting and biodegradable delivery system.\u0000Methods: A combination of heat homogenization and ultrasonication was used to implement the emulsification process. To obtain the optimal formulation, the prepared formulations were first assessed for particle size, Polydispersity Index (PDI), zeta potential, entrapment efficiency, and drug loading capacity. Additionally, a range of physicochemical characterization techniques were employed, including dissolution studies, melting point determination, Fourier-Transform Infrared (FTIR) spectroscopy, and Field Emission Scanning Electron Microscopy (FESEM), as well as cytotoxicity assessment of TG-NLCs in MCF-7 breast cancer cells.\u0000Results: The selected formula, TG03, showed a zeta potential of-13.5±0.27 mV and a particle size of 149±0.55 nm. This was further examined using a FESEM. In the in vitro drug release study, the formula demonstrated better-controlled drug release for 48 h in comparison to other formulations. In addition, the significant anti-proliferation activity of TG-NLCs against the MCF-7 breast cancer cell line.\u0000Conclusion: Nanostructured lipid carriers (NLCs) are one type of multifunctional nanoparticle that includes many combinations of lipids and medicines for various delivery routes.","PeriodicalId":13737,"journal":{"name":"International Journal of Applied Pharmaceutics","volume":"4 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141003828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}