锂离子电池石墨负极的改性

Xiaohan Xia
{"title":"锂离子电池石墨负极的改性","authors":"Xiaohan Xia","doi":"10.54254/2755-2721/60/20240862","DOIUrl":null,"url":null,"abstract":"Traditional fossil energy is being replaced by low-carbon clean energy, and lithium batteries have obtained extensive attention and are widely used for their high energy density and power density. Graphite is the most commonly used anode material for its excellent electrochemical performance. Since the theoretical lithium storage capacity of graphite is only 372 mAh/g, the lithium battery with graphite anode has problems such as poor electrolyte compatibility and a high volume expansion rate. Many researchers have devoted themselves to the modification of graphite anode to improve the comprehensive performance of graphite anode materials. This paper focuses on three main modification methods of graphite anodes. The application research progress of graphite modification on the improvement of lithium batteries performance was summarized from the aspects of spheroidization treatment, surface coating, and element doping. Spheroidization treatment and surface coating can effectively improve the electrochemical properties of the material interface, but it is difficult to increase the energy density of the material interface. Doping modification can improve energy density, but it cannot be uniform and stable. The modification and improvement technology of graphite anode still needs to be developed.","PeriodicalId":350976,"journal":{"name":"Applied and Computational Engineering","volume":"57 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modification of graphite anode for lithium ion battery\",\"authors\":\"Xiaohan Xia\",\"doi\":\"10.54254/2755-2721/60/20240862\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditional fossil energy is being replaced by low-carbon clean energy, and lithium batteries have obtained extensive attention and are widely used for their high energy density and power density. Graphite is the most commonly used anode material for its excellent electrochemical performance. Since the theoretical lithium storage capacity of graphite is only 372 mAh/g, the lithium battery with graphite anode has problems such as poor electrolyte compatibility and a high volume expansion rate. Many researchers have devoted themselves to the modification of graphite anode to improve the comprehensive performance of graphite anode materials. This paper focuses on three main modification methods of graphite anodes. The application research progress of graphite modification on the improvement of lithium batteries performance was summarized from the aspects of spheroidization treatment, surface coating, and element doping. Spheroidization treatment and surface coating can effectively improve the electrochemical properties of the material interface, but it is difficult to increase the energy density of the material interface. Doping modification can improve energy density, but it cannot be uniform and stable. The modification and improvement technology of graphite anode still needs to be developed.\",\"PeriodicalId\":350976,\"journal\":{\"name\":\"Applied and Computational Engineering\",\"volume\":\"57 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied and Computational Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54254/2755-2721/60/20240862\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54254/2755-2721/60/20240862","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

传统的化石能源正在被低碳清洁能源所取代,而锂电池因其高能量密度和功率密度而受到广泛关注和应用。石墨以其优异的电化学性能成为最常用的负极材料。由于石墨的理论储锂容量仅为 372 mAh/g,因此石墨负极锂电池存在电解液相容性差、体积膨胀率高等问题。为了提高石墨负极材料的综合性能,许多研究人员致力于石墨负极的改性研究。本文主要介绍石墨负极的三种主要改性方法。从球化处理、表面涂层和元素掺杂三个方面总结了石墨改性在提高锂电池性能方面的应用研究进展。球化处理和表面涂层能有效改善材料界面的电化学性能,但难以提高材料界面的能量密度。掺杂改性可以提高能量密度,但不能做到均匀稳定。石墨负极的改性和改良技术仍有待开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modification of graphite anode for lithium ion battery
Traditional fossil energy is being replaced by low-carbon clean energy, and lithium batteries have obtained extensive attention and are widely used for their high energy density and power density. Graphite is the most commonly used anode material for its excellent electrochemical performance. Since the theoretical lithium storage capacity of graphite is only 372 mAh/g, the lithium battery with graphite anode has problems such as poor electrolyte compatibility and a high volume expansion rate. Many researchers have devoted themselves to the modification of graphite anode to improve the comprehensive performance of graphite anode materials. This paper focuses on three main modification methods of graphite anodes. The application research progress of graphite modification on the improvement of lithium batteries performance was summarized from the aspects of spheroidization treatment, surface coating, and element doping. Spheroidization treatment and surface coating can effectively improve the electrochemical properties of the material interface, but it is difficult to increase the energy density of the material interface. Doping modification can improve energy density, but it cannot be uniform and stable. The modification and improvement technology of graphite anode still needs to be developed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Implementation of seamless assistance with Google Assistant leveraging cloud computing Deep learning vulnerability analysis against adversarial attacks Comparison of deep learning models based on Chest X-ray image classification DOA estimation technology based on array signal processing nested array Precise positioning and prediction system for autonomous driving based on generative artificial intelligence
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1