{"title":"聚合物浓度和表面活性剂对谷胱甘肽-卡帕卡拉胶纳米球的物理特性、药物释放和抗氧化活性的影响","authors":"Yuyun Nailufa, Bambang Widjaja","doi":"10.22159/ijap.2024v16i3.49242","DOIUrl":null,"url":null,"abstract":"Objective: Glutathione is one of the antioxidants widely used as an antiaging and skin lightener. Glutathione at a dose of 250 mg/d orally proved useful as an antiaging. At the same time, glutathione topical night cream is effective at a dose of 0.1% for the skin of Indonesian women. Glutathione is one of the antioxidants that has easily oxidized properties in storage. Research purpose to optimize the concentration of kappa carrageenan polymer and surfactan to obtain the optimal physical characteristics of nanosphere system analyzed based on size, PDI, yield, drug loading, entrapment efficiency, dissolution and antioxidant activity.\nMethods: The most commonly used method of making nanospheres is ionotropic gelation because it has proven effective, easy, and easy to apply. Ionotropic gelation is depend on the tendency of polyelectrolytes to cross connect to develop hydrogel beads often called gelispheres in the existence of counter ions. Nanospheres were prepared by aerosolization ionotropic gelation technique followed by freeze-drying. This method uses carrageenan polymers of 0.5% and 1.0% with the addition of surfactant as a stabilizer. Evaluation parameters are particle size, entrapment efficiency, drug loading, drug release and antioxidant activity.\nResults: The results of the nanospheres obtained were tested physically and drug activity. Nanospheres successfully formed, with size 382.67±52.24 nm, F2 325.20±4.62 nm, F3 495.39±30.61 nm, and F4 409.80±4.11 nm. The greater the polymer concentration, the greater the value of entrapment efficiency and drug content in the nanosphere. The morphology of the nanosphere is quite good, spherical, with a smooth surface. The release profile shows that glutathione release is quite good but takes a long time, namely F1 73.91±2.17%, F2 75.91±2.76%, F3 78.56±2.82%, and F4 79.56±1.34% in 480 min or 8 h. Antioxidant activity of glutathione-Kappa carrageenan nanospheres with the DPPH method showed that nanospheres have medium or medium category antioxidant activity.\nConclusion: The most optimal formula is F4 with 1% kappa-carrageenan concentration and 0.6% KCl.","PeriodicalId":13737,"journal":{"name":"International Journal of Applied Pharmaceutics","volume":"10 S6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EFFECT OF POLYMER CONCENTRATION AND SURFACTANTS ON PHYSICAL CHARACTERISTICS, DRUG RELEASE AND ANTIOXIDANT ACTIVITY OF GLUTATHIONE-KAPPA CARRAGEENAN NANOSPHERES\",\"authors\":\"Yuyun Nailufa, Bambang Widjaja\",\"doi\":\"10.22159/ijap.2024v16i3.49242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Objective: Glutathione is one of the antioxidants widely used as an antiaging and skin lightener. Glutathione at a dose of 250 mg/d orally proved useful as an antiaging. At the same time, glutathione topical night cream is effective at a dose of 0.1% for the skin of Indonesian women. Glutathione is one of the antioxidants that has easily oxidized properties in storage. Research purpose to optimize the concentration of kappa carrageenan polymer and surfactan to obtain the optimal physical characteristics of nanosphere system analyzed based on size, PDI, yield, drug loading, entrapment efficiency, dissolution and antioxidant activity.\\nMethods: The most commonly used method of making nanospheres is ionotropic gelation because it has proven effective, easy, and easy to apply. Ionotropic gelation is depend on the tendency of polyelectrolytes to cross connect to develop hydrogel beads often called gelispheres in the existence of counter ions. Nanospheres were prepared by aerosolization ionotropic gelation technique followed by freeze-drying. This method uses carrageenan polymers of 0.5% and 1.0% with the addition of surfactant as a stabilizer. Evaluation parameters are particle size, entrapment efficiency, drug loading, drug release and antioxidant activity.\\nResults: The results of the nanospheres obtained were tested physically and drug activity. Nanospheres successfully formed, with size 382.67±52.24 nm, F2 325.20±4.62 nm, F3 495.39±30.61 nm, and F4 409.80±4.11 nm. The greater the polymer concentration, the greater the value of entrapment efficiency and drug content in the nanosphere. The morphology of the nanosphere is quite good, spherical, with a smooth surface. The release profile shows that glutathione release is quite good but takes a long time, namely F1 73.91±2.17%, F2 75.91±2.76%, F3 78.56±2.82%, and F4 79.56±1.34% in 480 min or 8 h. Antioxidant activity of glutathione-Kappa carrageenan nanospheres with the DPPH method showed that nanospheres have medium or medium category antioxidant activity.\\nConclusion: The most optimal formula is F4 with 1% kappa-carrageenan concentration and 0.6% KCl.\",\"PeriodicalId\":13737,\"journal\":{\"name\":\"International Journal of Applied Pharmaceutics\",\"volume\":\"10 S6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Pharmaceutics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22159/ijap.2024v16i3.49242\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Pharmaceutics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22159/ijap.2024v16i3.49242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
EFFECT OF POLYMER CONCENTRATION AND SURFACTANTS ON PHYSICAL CHARACTERISTICS, DRUG RELEASE AND ANTIOXIDANT ACTIVITY OF GLUTATHIONE-KAPPA CARRAGEENAN NANOSPHERES
Objective: Glutathione is one of the antioxidants widely used as an antiaging and skin lightener. Glutathione at a dose of 250 mg/d orally proved useful as an antiaging. At the same time, glutathione topical night cream is effective at a dose of 0.1% for the skin of Indonesian women. Glutathione is one of the antioxidants that has easily oxidized properties in storage. Research purpose to optimize the concentration of kappa carrageenan polymer and surfactan to obtain the optimal physical characteristics of nanosphere system analyzed based on size, PDI, yield, drug loading, entrapment efficiency, dissolution and antioxidant activity.
Methods: The most commonly used method of making nanospheres is ionotropic gelation because it has proven effective, easy, and easy to apply. Ionotropic gelation is depend on the tendency of polyelectrolytes to cross connect to develop hydrogel beads often called gelispheres in the existence of counter ions. Nanospheres were prepared by aerosolization ionotropic gelation technique followed by freeze-drying. This method uses carrageenan polymers of 0.5% and 1.0% with the addition of surfactant as a stabilizer. Evaluation parameters are particle size, entrapment efficiency, drug loading, drug release and antioxidant activity.
Results: The results of the nanospheres obtained were tested physically and drug activity. Nanospheres successfully formed, with size 382.67±52.24 nm, F2 325.20±4.62 nm, F3 495.39±30.61 nm, and F4 409.80±4.11 nm. The greater the polymer concentration, the greater the value of entrapment efficiency and drug content in the nanosphere. The morphology of the nanosphere is quite good, spherical, with a smooth surface. The release profile shows that glutathione release is quite good but takes a long time, namely F1 73.91±2.17%, F2 75.91±2.76%, F3 78.56±2.82%, and F4 79.56±1.34% in 480 min or 8 h. Antioxidant activity of glutathione-Kappa carrageenan nanospheres with the DPPH method showed that nanospheres have medium or medium category antioxidant activity.
Conclusion: The most optimal formula is F4 with 1% kappa-carrageenan concentration and 0.6% KCl.
期刊介绍:
International Journal of Applied Pharmaceutics (Int J App Pharm) is a peer-reviewed, bimonthly (onward March 2017) open access journal devoted to the excellence and research in the pure pharmaceutics. This Journal publishes original research work that contributes significantly to further the scientific knowledge in conventional dosage forms, formulation development and characterization, controlled and novel drug delivery, biopharmaceutics, pharmacokinetics, molecular drug design, polymer-based drug delivery, nanotechnology, nanocarrier based drug delivery, novel routes and modes of delivery; responsive delivery systems, prodrug design, development and characterization of the targeted drug delivery systems, ligand carrier interactions etc. However, the other areas which are related to the pharmaceutics are also entertained includes physical pharmacy and API (active pharmaceutical ingredients) analysis. The Journal publishes original research work either as a Original Article or as a Short Communication. Review Articles on a current topic in the said fields are also considered for publication in the Journal.