{"title":"利用 LC 和 LC-MS/MS 对曲安奈德六酮降解产物进行鉴定、分离和表征","authors":"Bhavna SUNIL MAHAJAN, P. Miniyar","doi":"10.22159/ijap.2024v16i3.50122","DOIUrl":null,"url":null,"abstract":"Objective: The study aimed to separate the forced degradation products of Triamcinolone hexacetonide using HPLC and characterize the degradation product by LC-MS/MS fragmentation pattern.\nMethods: Triamcinolone hexacetonide (THA) and its primary degradation products were identified using a liquid chromatography-mass spectrometry/Mass spectrometry (LC-MS/MS) approach. The degradation study was based on in-depth stress testing with acid, base, peroxide, heat, and light. A Zorbax SB C18 column and a greener mobile phase composed of methanol and 10 mmol ammonium acetate buffer in water at pH 3 were employed to accomplish separation and quantitation at a flow rate of 0.7 ml/min in an isocratic mode with a 239 nm detection wavelength.\nResults: A major degradation product of the drug was obtained in acidic and alkaline stress conditions. The drug was found to be stable for all other stress conditions. The LC-MS/MS analysis results of the active pharmaceutical ingredient and resulting product after degradation were interpreted to identify the novel degradation product and fragments. The developed method was validated as per International Council for Harmonization (ICH) guidelines. The square root of the correlation coefficients, which indicated linearity for THA in 50 to 150 % of the workload, was 0.99. Method Precision assay was performed on six different preparations, percentage relative standard deviation (% RSD) of assay value is 0.17 % and system precision is 0.30 %. In accuracy, overall % RSD of 50 %, 100 %, and 150 % in triplicate is 0.95.\nConclusion: It is concluded that the drug is stable to all other stress conditions except for acidic and alkaline stress conditions and generates a novel degradation product. The developed LC (Liquid chromatography) method separates and identifies the degradation product.","PeriodicalId":13737,"journal":{"name":"International Journal of Applied Pharmaceutics","volume":"28 31","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"IDENTIFICATION, SEPARATION, AND CHARACTERIZATION OF DEGRADATION PRODUCTS OF TRIAMCINOLONE HEXACETONIDE USING LC AND LC-MS/MS\",\"authors\":\"Bhavna SUNIL MAHAJAN, P. Miniyar\",\"doi\":\"10.22159/ijap.2024v16i3.50122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Objective: The study aimed to separate the forced degradation products of Triamcinolone hexacetonide using HPLC and characterize the degradation product by LC-MS/MS fragmentation pattern.\\nMethods: Triamcinolone hexacetonide (THA) and its primary degradation products were identified using a liquid chromatography-mass spectrometry/Mass spectrometry (LC-MS/MS) approach. The degradation study was based on in-depth stress testing with acid, base, peroxide, heat, and light. A Zorbax SB C18 column and a greener mobile phase composed of methanol and 10 mmol ammonium acetate buffer in water at pH 3 were employed to accomplish separation and quantitation at a flow rate of 0.7 ml/min in an isocratic mode with a 239 nm detection wavelength.\\nResults: A major degradation product of the drug was obtained in acidic and alkaline stress conditions. The drug was found to be stable for all other stress conditions. The LC-MS/MS analysis results of the active pharmaceutical ingredient and resulting product after degradation were interpreted to identify the novel degradation product and fragments. The developed method was validated as per International Council for Harmonization (ICH) guidelines. The square root of the correlation coefficients, which indicated linearity for THA in 50 to 150 % of the workload, was 0.99. Method Precision assay was performed on six different preparations, percentage relative standard deviation (% RSD) of assay value is 0.17 % and system precision is 0.30 %. In accuracy, overall % RSD of 50 %, 100 %, and 150 % in triplicate is 0.95.\\nConclusion: It is concluded that the drug is stable to all other stress conditions except for acidic and alkaline stress conditions and generates a novel degradation product. The developed LC (Liquid chromatography) method separates and identifies the degradation product.\",\"PeriodicalId\":13737,\"journal\":{\"name\":\"International Journal of Applied Pharmaceutics\",\"volume\":\"28 31\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Pharmaceutics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22159/ijap.2024v16i3.50122\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Pharmaceutics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22159/ijap.2024v16i3.50122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
IDENTIFICATION, SEPARATION, AND CHARACTERIZATION OF DEGRADATION PRODUCTS OF TRIAMCINOLONE HEXACETONIDE USING LC AND LC-MS/MS
Objective: The study aimed to separate the forced degradation products of Triamcinolone hexacetonide using HPLC and characterize the degradation product by LC-MS/MS fragmentation pattern.
Methods: Triamcinolone hexacetonide (THA) and its primary degradation products were identified using a liquid chromatography-mass spectrometry/Mass spectrometry (LC-MS/MS) approach. The degradation study was based on in-depth stress testing with acid, base, peroxide, heat, and light. A Zorbax SB C18 column and a greener mobile phase composed of methanol and 10 mmol ammonium acetate buffer in water at pH 3 were employed to accomplish separation and quantitation at a flow rate of 0.7 ml/min in an isocratic mode with a 239 nm detection wavelength.
Results: A major degradation product of the drug was obtained in acidic and alkaline stress conditions. The drug was found to be stable for all other stress conditions. The LC-MS/MS analysis results of the active pharmaceutical ingredient and resulting product after degradation were interpreted to identify the novel degradation product and fragments. The developed method was validated as per International Council for Harmonization (ICH) guidelines. The square root of the correlation coefficients, which indicated linearity for THA in 50 to 150 % of the workload, was 0.99. Method Precision assay was performed on six different preparations, percentage relative standard deviation (% RSD) of assay value is 0.17 % and system precision is 0.30 %. In accuracy, overall % RSD of 50 %, 100 %, and 150 % in triplicate is 0.95.
Conclusion: It is concluded that the drug is stable to all other stress conditions except for acidic and alkaline stress conditions and generates a novel degradation product. The developed LC (Liquid chromatography) method separates and identifies the degradation product.
期刊介绍:
International Journal of Applied Pharmaceutics (Int J App Pharm) is a peer-reviewed, bimonthly (onward March 2017) open access journal devoted to the excellence and research in the pure pharmaceutics. This Journal publishes original research work that contributes significantly to further the scientific knowledge in conventional dosage forms, formulation development and characterization, controlled and novel drug delivery, biopharmaceutics, pharmacokinetics, molecular drug design, polymer-based drug delivery, nanotechnology, nanocarrier based drug delivery, novel routes and modes of delivery; responsive delivery systems, prodrug design, development and characterization of the targeted drug delivery systems, ligand carrier interactions etc. However, the other areas which are related to the pharmaceutics are also entertained includes physical pharmacy and API (active pharmaceutical ingredients) analysis. The Journal publishes original research work either as a Original Article or as a Short Communication. Review Articles on a current topic in the said fields are also considered for publication in the Journal.