纳米粒子在癌症治疗中的创新综述:意义、靶向机制和临床前景

Q2 Pharmacology, Toxicology and Pharmaceutics International Journal of Applied Pharmaceutics Pub Date : 2024-05-07 DOI:10.22159/ijap.2024v16i3.49358
L. R., R. Velmurugan
{"title":"纳米粒子在癌症治疗中的创新综述:意义、靶向机制和临床前景","authors":"L. R., R. Velmurugan","doi":"10.22159/ijap.2024v16i3.49358","DOIUrl":null,"url":null,"abstract":"The main reason for morbidity and death globally is cancer, which has a complex pathophysiology. There are several traditional treatments for cancer, including chemotherapy, radiation therapy, targeted therapies, and immunotherapies. Multiple drug resistance, cytotoxicity, and lack of specificity pose significant challenges to cancer treatments. Molecular diagnostics and cancer treatment have been transformed by nanotechnology. For cancer treatment, nanoparticles (1–100 nm) are ideal because they are biocompatible, have low toxicity, excellent stability, high permeability, are precise and stable, and can deliver clear and accurate results. There are several main categories of nanoparticles. When it comes to the delivery of nanoparticle drugs, tumour characteristics and the tumour environment are considered. As well as providing advantages over conventional cancer treatments, nanoparticles prevent multidrug resistance, further overcoming their limitations. As new mechanisms are unravelled in studying multidrug resistance, nanoparticles are becoming more critical. Nano formulations have gained a new perspective on cancer treatment due to their many therapeutic applications. The number of approved nanodrugs has not increased significantly despite most research being conducted in vivo and in vitro. A review of nanoparticle oncological implications, targeting mechanisms, and approved nanotherapeutics is presented here. A current perspective on clinical translation is also provided, highlighting its advantages and challenges.","PeriodicalId":13737,"journal":{"name":"International Journal of Applied Pharmaceutics","volume":"32 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A REVIEW OF NANOPARTICLE INNOVATIONS IN CANCER THERAPY: IMPLICATIONS, TARGETING MECHANISMS AND CLINICAL PROSPECTS\",\"authors\":\"L. R., R. Velmurugan\",\"doi\":\"10.22159/ijap.2024v16i3.49358\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main reason for morbidity and death globally is cancer, which has a complex pathophysiology. There are several traditional treatments for cancer, including chemotherapy, radiation therapy, targeted therapies, and immunotherapies. Multiple drug resistance, cytotoxicity, and lack of specificity pose significant challenges to cancer treatments. Molecular diagnostics and cancer treatment have been transformed by nanotechnology. For cancer treatment, nanoparticles (1–100 nm) are ideal because they are biocompatible, have low toxicity, excellent stability, high permeability, are precise and stable, and can deliver clear and accurate results. There are several main categories of nanoparticles. When it comes to the delivery of nanoparticle drugs, tumour characteristics and the tumour environment are considered. As well as providing advantages over conventional cancer treatments, nanoparticles prevent multidrug resistance, further overcoming their limitations. As new mechanisms are unravelled in studying multidrug resistance, nanoparticles are becoming more critical. Nano formulations have gained a new perspective on cancer treatment due to their many therapeutic applications. The number of approved nanodrugs has not increased significantly despite most research being conducted in vivo and in vitro. A review of nanoparticle oncological implications, targeting mechanisms, and approved nanotherapeutics is presented here. A current perspective on clinical translation is also provided, highlighting its advantages and challenges.\",\"PeriodicalId\":13737,\"journal\":{\"name\":\"International Journal of Applied Pharmaceutics\",\"volume\":\"32 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Pharmaceutics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22159/ijap.2024v16i3.49358\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Pharmaceutics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22159/ijap.2024v16i3.49358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0

摘要

癌症是全球发病和死亡的主要原因,其病理生理学十分复杂。癌症有多种传统治疗方法,包括化疗、放疗、靶向治疗和免疫治疗。多重耐药性、细胞毒性和缺乏特异性给癌症治疗带来了巨大挑战。纳米技术改变了分子诊断和癌症治疗。对于癌症治疗,纳米粒子(1-100 纳米)是理想的选择,因为它们具有生物相容性、低毒性、出色的稳定性、高渗透性、精确性和稳定性,并能提供清晰准确的结果。纳米粒子有几大类。在纳米颗粒给药方面,要考虑肿瘤的特性和肿瘤环境。与传统的癌症治疗方法相比,纳米粒子不仅具有优势,还能防止多药耐药性,进一步克服其局限性。随着研究多药耐药性的新机制不断被揭示,纳米粒子正变得越来越重要。纳米制剂因其多种治疗应用而在癌症治疗方面获得了新的视角。尽管大多数研究都是在体内和体外进行的,但已批准的纳米药物数量并未显著增加。本文综述了纳米粒子的肿瘤学意义、靶向机制和已获批准的纳米疗法。本文还提供了当前临床转化的视角,强调了其优势和挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A REVIEW OF NANOPARTICLE INNOVATIONS IN CANCER THERAPY: IMPLICATIONS, TARGETING MECHANISMS AND CLINICAL PROSPECTS
The main reason for morbidity and death globally is cancer, which has a complex pathophysiology. There are several traditional treatments for cancer, including chemotherapy, radiation therapy, targeted therapies, and immunotherapies. Multiple drug resistance, cytotoxicity, and lack of specificity pose significant challenges to cancer treatments. Molecular diagnostics and cancer treatment have been transformed by nanotechnology. For cancer treatment, nanoparticles (1–100 nm) are ideal because they are biocompatible, have low toxicity, excellent stability, high permeability, are precise and stable, and can deliver clear and accurate results. There are several main categories of nanoparticles. When it comes to the delivery of nanoparticle drugs, tumour characteristics and the tumour environment are considered. As well as providing advantages over conventional cancer treatments, nanoparticles prevent multidrug resistance, further overcoming their limitations. As new mechanisms are unravelled in studying multidrug resistance, nanoparticles are becoming more critical. Nano formulations have gained a new perspective on cancer treatment due to their many therapeutic applications. The number of approved nanodrugs has not increased significantly despite most research being conducted in vivo and in vitro. A review of nanoparticle oncological implications, targeting mechanisms, and approved nanotherapeutics is presented here. A current perspective on clinical translation is also provided, highlighting its advantages and challenges.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Applied Pharmaceutics
International Journal of Applied Pharmaceutics Pharmacology, Toxicology and Pharmaceutics-Pharmacology, Toxicology and Pharmaceutics (miscellaneous)
CiteScore
1.40
自引率
0.00%
发文量
219
期刊介绍: International Journal of Applied Pharmaceutics (Int J App Pharm) is a peer-reviewed, bimonthly (onward March 2017) open access journal devoted to the excellence and research in the pure pharmaceutics. This Journal publishes original research work that contributes significantly to further the scientific knowledge in conventional dosage forms, formulation development and characterization, controlled and novel drug delivery, biopharmaceutics, pharmacokinetics, molecular drug design, polymer-based drug delivery, nanotechnology, nanocarrier based drug delivery, novel routes and modes of delivery; responsive delivery systems, prodrug design, development and characterization of the targeted drug delivery systems, ligand carrier interactions etc. However, the other areas which are related to the pharmaceutics are also entertained includes physical pharmacy and API (active pharmaceutical ingredients) analysis. The Journal publishes original research work either as a Original Article or as a Short Communication. Review Articles on a current topic in the said fields are also considered for publication in the Journal.
期刊最新文献
DEVELOPMENT, OPTIMIZATION AND IN VITRO CHARACTERIZATION OF HALOPERIDOL NANOCRYSTALS USING 32 FACTORIAL DESIGN ANALYTICAL TECHNIQUES FOR DETERMINATION OF MIRABEGRON FROM BULK, PHARMACEUTICAL FORMULATION, AND BIOLOGICAL MATRICES: A CRITICAL REVIEW FORMULATION AND EVALUATION OF RED GINGER RHIZOME EXTRACT SOAP AS AN ANTIBACTERIAL THE APPLICATION OF BIOANALYTICAL METHOD OF TAMOXIFEN AND ITS ACTIVE METABOLITES FOR THERAPEUTIC DRUG MONITORING IN BREAST CANCER PATIENTS: A REVIEW RP-HPLC METHOD DEVELOPMENT AND VALIDATION FOR SIMULTANEOUS ESTIMATION OF CURCUMIN AND RESVERATROL IN NANO-MICELLE: DUAL DRUG DUAL FORM SIMULTANEOUS ESTIMATION
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1