采用有效温度法对喷射器强化双蒸发器循环进行能效分析

IF 2.8 Q2 THERMODYNAMICS Heat Transfer Pub Date : 2024-05-06 DOI:10.1002/htj.23073
Parinam Anuradha
{"title":"采用有效温度法对喷射器强化双蒸发器循环进行能效分析","authors":"Parinam Anuradha","doi":"10.1002/htj.23073","DOIUrl":null,"url":null,"abstract":"<p>This study compares the exergy of an ejector-based two evaporator cycle (EB-TEC) with a conventional two evaporator cycle (C-TEC). The analysis utilizes a modified Gouy–Stodola equation, which provides a more accurate insight of the system irreversibility compared to the standard Gouy–Stodola formulation. Furthermore, the comparison includes three working fluids, that is, R134a, R1234ze, and R600 in both the cycles. The study examines the effects of varying evaporators and condenser temperatures and the dryness fraction at the exit of Evaporator 1. The data is analyzed using an Engineering Equation Solver. The findings indicate that increasing the temperature of the low-temperature evaporator leads to a drop in exergy losses and enhancement in exergy efficiency in both the cycles. When the temperature of Evaporator 1 is increased, the total exergy of the EB-TEC is decreased but for the C-TEC, it is increased. Furthermore, increasing the condenser temperature results in higher exergy destruction in both EB-TEC and C-TEC. Notably, the maximum exergy destruction is 49.44 kW for R600, whereas the minimum exergy destruction is 14.42 kW for R1234ze in the EB-TEC.</p>","PeriodicalId":44939,"journal":{"name":"Heat Transfer","volume":"53 6","pages":"2991-3020"},"PeriodicalIF":2.8000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exergy analysis of ejector-enhanced dual-evaporator cycle using effective temperature method\",\"authors\":\"Parinam Anuradha\",\"doi\":\"10.1002/htj.23073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study compares the exergy of an ejector-based two evaporator cycle (EB-TEC) with a conventional two evaporator cycle (C-TEC). The analysis utilizes a modified Gouy–Stodola equation, which provides a more accurate insight of the system irreversibility compared to the standard Gouy–Stodola formulation. Furthermore, the comparison includes three working fluids, that is, R134a, R1234ze, and R600 in both the cycles. The study examines the effects of varying evaporators and condenser temperatures and the dryness fraction at the exit of Evaporator 1. The data is analyzed using an Engineering Equation Solver. The findings indicate that increasing the temperature of the low-temperature evaporator leads to a drop in exergy losses and enhancement in exergy efficiency in both the cycles. When the temperature of Evaporator 1 is increased, the total exergy of the EB-TEC is decreased but for the C-TEC, it is increased. Furthermore, increasing the condenser temperature results in higher exergy destruction in both EB-TEC and C-TEC. Notably, the maximum exergy destruction is 49.44 kW for R600, whereas the minimum exergy destruction is 14.42 kW for R1234ze in the EB-TEC.</p>\",\"PeriodicalId\":44939,\"journal\":{\"name\":\"Heat Transfer\",\"volume\":\"53 6\",\"pages\":\"2991-3020\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Heat Transfer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/htj.23073\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/htj.23073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

摘要

本研究比较了基于喷射器的双蒸发器循环(EB-TEC)与传统双蒸发器循环(C-TEC)的放能。分析采用了修正的 Gouy-Stodola 方程,与标准的 Gouy-Stodola 公式相比,该方程能更准确地洞察系统的不可逆性。此外,比较还包括三种工作流体,即两种循环中的 R134a、R1234ze 和 R600。该研究考察了不同蒸发器和冷凝器温度以及蒸发器 1 出口处干燥度分数的影响。使用工程方程求解器对数据进行了分析。研究结果表明,提高低温蒸发器的温度会导致两个循环的放能损失下降,放能效率提高。当蒸发器 1 的温度升高时,EB-TEC 的总放热量减少,但 C-TEC 的总放热量增加。此外,提高冷凝器温度会导致 EB-TEC 和 C-TEC 的高能量破坏。值得注意的是,在 EB-TEC 中,R600 的最大能量损耗为 49.44 千瓦,而 R1234ze 的最小能量损耗为 14.42 千瓦。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exergy analysis of ejector-enhanced dual-evaporator cycle using effective temperature method

This study compares the exergy of an ejector-based two evaporator cycle (EB-TEC) with a conventional two evaporator cycle (C-TEC). The analysis utilizes a modified Gouy–Stodola equation, which provides a more accurate insight of the system irreversibility compared to the standard Gouy–Stodola formulation. Furthermore, the comparison includes three working fluids, that is, R134a, R1234ze, and R600 in both the cycles. The study examines the effects of varying evaporators and condenser temperatures and the dryness fraction at the exit of Evaporator 1. The data is analyzed using an Engineering Equation Solver. The findings indicate that increasing the temperature of the low-temperature evaporator leads to a drop in exergy losses and enhancement in exergy efficiency in both the cycles. When the temperature of Evaporator 1 is increased, the total exergy of the EB-TEC is decreased but for the C-TEC, it is increased. Furthermore, increasing the condenser temperature results in higher exergy destruction in both EB-TEC and C-TEC. Notably, the maximum exergy destruction is 49.44 kW for R600, whereas the minimum exergy destruction is 14.42 kW for R1234ze in the EB-TEC.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Heat Transfer
Heat Transfer THERMODYNAMICS-
CiteScore
6.30
自引率
19.40%
发文量
342
期刊最新文献
Issue Information Issue Information Optimizing heat transfer in solar air heater ducts through staggered arrangement of discrete V-ribs Experimental investigation on an innovative serpentine channel-based nanofluid cooling technology for modular lithium-ion battery thermal management Utilizing multilayer perceptron for machine learning diagnosis in phase change material-based thermal management systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1