辅助支架设计的实验验证:三维打印钛原型的三点弯曲

IF 2.7 Q3 ENGINEERING, BIOMEDICAL Frontiers in medical technology Pub Date : 2024-05-06 DOI:10.3389/fmedt.2024.1388207
Rahul Vellaparambil, Woo-Suck Han, Pierluigi Di Giovanni, Stéphane Avril
{"title":"辅助支架设计的实验验证:三维打印钛原型的三点弯曲","authors":"Rahul Vellaparambil, Woo-Suck Han, Pierluigi Di Giovanni, Stéphane Avril","doi":"10.3389/fmedt.2024.1388207","DOIUrl":null,"url":null,"abstract":"Numerical simulations have demonstrated the superior bending flexibility of auxetic stents compared to conventional stent designs for endovascular procedures. However, conventional stent manufacturing techniques struggle to produce complex auxetic stent designs, fueling the adoption of additive manufacturing techniques.In this study, we employed DMLS additive manufacturing to create Titanium Ti64 alloy stent prototypes based on auxetic stent designs investigated in a previous study. These prototypes were then subjected to experimental three-point bending tests.The experimental results were replicated using a finite element model, which showed remarkable accuracy in predicting the bending flexibility of four auxetic stents and two conventional stents.Although this validation study demonstrates the promising potential of DMLS and other additive manufacturing methods for fabricating auxetic stents, further optimization of current stent design limitations and the incorporation of post-processing techniques are essential to enhance the reliability of these additive manufacturing processes.","PeriodicalId":94015,"journal":{"name":"Frontiers in medical technology","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental validation of auxetic stent designs: three-point bending of 3D printed Titanium prototypes\",\"authors\":\"Rahul Vellaparambil, Woo-Suck Han, Pierluigi Di Giovanni, Stéphane Avril\",\"doi\":\"10.3389/fmedt.2024.1388207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Numerical simulations have demonstrated the superior bending flexibility of auxetic stents compared to conventional stent designs for endovascular procedures. However, conventional stent manufacturing techniques struggle to produce complex auxetic stent designs, fueling the adoption of additive manufacturing techniques.In this study, we employed DMLS additive manufacturing to create Titanium Ti64 alloy stent prototypes based on auxetic stent designs investigated in a previous study. These prototypes were then subjected to experimental three-point bending tests.The experimental results were replicated using a finite element model, which showed remarkable accuracy in predicting the bending flexibility of four auxetic stents and two conventional stents.Although this validation study demonstrates the promising potential of DMLS and other additive manufacturing methods for fabricating auxetic stents, further optimization of current stent design limitations and the incorporation of post-processing techniques are essential to enhance the reliability of these additive manufacturing processes.\",\"PeriodicalId\":94015,\"journal\":{\"name\":\"Frontiers in medical technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in medical technology\",\"FirstCategoryId\":\"0\",\"ListUrlMain\":\"https://doi.org/10.3389/fmedt.2024.1388207\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in medical technology","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.3389/fmedt.2024.1388207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

数值模拟显示,与传统支架设计相比,辅助支架在血管内手术中具有更优越的弯曲灵活性。在本研究中,我们采用 DMLS 快速成型技术,根据之前研究中的辅助支架设计制造出了钛 Ti64 合金支架原型。虽然这项验证研究证明了 DMLS 和其他增材制造方法在制造辅助支架方面的巨大潜力,但进一步优化当前支架设计的局限性和采用后处理技术对于提高这些增材制造工艺的可靠性至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Experimental validation of auxetic stent designs: three-point bending of 3D printed Titanium prototypes
Numerical simulations have demonstrated the superior bending flexibility of auxetic stents compared to conventional stent designs for endovascular procedures. However, conventional stent manufacturing techniques struggle to produce complex auxetic stent designs, fueling the adoption of additive manufacturing techniques.In this study, we employed DMLS additive manufacturing to create Titanium Ti64 alloy stent prototypes based on auxetic stent designs investigated in a previous study. These prototypes were then subjected to experimental three-point bending tests.The experimental results were replicated using a finite element model, which showed remarkable accuracy in predicting the bending flexibility of four auxetic stents and two conventional stents.Although this validation study demonstrates the promising potential of DMLS and other additive manufacturing methods for fabricating auxetic stents, further optimization of current stent design limitations and the incorporation of post-processing techniques are essential to enhance the reliability of these additive manufacturing processes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.70
自引率
0.00%
发文量
0
审稿时长
13 weeks
期刊最新文献
Celiac disease gut microbiome studies in the third millennium: reviewing the findings and gaps of available literature. Structural brain preservation: a potential bridge to future medical technologies. Early detection of deteriorating patients in general wards through continuous contactless vital signs monitoring. Detection and counting of Leishmania intracellular parasites in microscopy images. From intra- to extra-uterine: early phase design of a transfer to extra-uterine life support through medical simulation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1