脂肪酸、酸/胺添加剂混合物和离子液体的摩擦学性能

Ju Shu, Cayetano Espejo, M. Kalin, A. Morina
{"title":"脂肪酸、酸/胺添加剂混合物和离子液体的摩擦学性能","authors":"Ju Shu, Cayetano Espejo, M. Kalin, A. Morina","doi":"10.1177/13506501241251524","DOIUrl":null,"url":null,"abstract":"Bio-based materials have attracted great attention from industry and academia in tribology because they are renewable, bio-degradable and easily accessible. This study aims to evaluate the efficiency of bio-based materials used both as neat lubricants and additives on friction and wear performance. The evaluated lubricants include oleic acid, a mixture containing oleic acid and dodecyl amine in hexadecane and a neat ionic liquid composed of oleic acid and dodecyl amine. The influence of the additive concentration, ratio between acid and amine, and oscillation frequency under reciprocating contacts has been investigated. Surface analysis was conducted by optical microscope, scanning electron microscopy and energy-dispersive X-ray spectroscopy, and time-of-flight secondary ion mass spectrometry. The results confirm that a small amount of oleic acid as an additive can provide limited friction reduction. Bio-based ionic liquid shows the lowest friction and wear coefficient in all testing conditions. A synergistic effect between oleic acid and dodecyl amine as an additive mixture has been observed when the two components are equimolar and the oscillating frequency is high. Time-of-flight secondary ion mass spectrometry analysis of the wear track indicates that the tribological process enhances the ionic character of the additive mixture, improving the lubrication performance.","PeriodicalId":509096,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology","volume":"62 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tribological performance of fatty acid, acid/amine additive mixture and ionic liquid\",\"authors\":\"Ju Shu, Cayetano Espejo, M. Kalin, A. Morina\",\"doi\":\"10.1177/13506501241251524\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bio-based materials have attracted great attention from industry and academia in tribology because they are renewable, bio-degradable and easily accessible. This study aims to evaluate the efficiency of bio-based materials used both as neat lubricants and additives on friction and wear performance. The evaluated lubricants include oleic acid, a mixture containing oleic acid and dodecyl amine in hexadecane and a neat ionic liquid composed of oleic acid and dodecyl amine. The influence of the additive concentration, ratio between acid and amine, and oscillation frequency under reciprocating contacts has been investigated. Surface analysis was conducted by optical microscope, scanning electron microscopy and energy-dispersive X-ray spectroscopy, and time-of-flight secondary ion mass spectrometry. The results confirm that a small amount of oleic acid as an additive can provide limited friction reduction. Bio-based ionic liquid shows the lowest friction and wear coefficient in all testing conditions. A synergistic effect between oleic acid and dodecyl amine as an additive mixture has been observed when the two components are equimolar and the oscillating frequency is high. Time-of-flight secondary ion mass spectrometry analysis of the wear track indicates that the tribological process enhances the ionic character of the additive mixture, improving the lubrication performance.\",\"PeriodicalId\":509096,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology\",\"volume\":\"62 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/13506501241251524\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/13506501241251524","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

生物基材料具有可再生、可生物降解和易于获取的特点,因此在摩擦学领域引起了工业界和学术界的极大关注。本研究旨在评估生物基材料作为纯润滑剂和添加剂对摩擦和磨损性能的影响。被评估的润滑剂包括油酸、油酸和十二烷基胺在十六烷中的混合物以及由油酸和十二烷基胺组成的纯离子液体。研究了添加剂浓度、酸和胺的比例以及往复接触下振荡频率的影响。采用光学显微镜、扫描电子显微镜和能量色散 X 射线光谱法以及飞行时间二次离子质谱法进行了表面分析。结果证实,作为添加剂的少量油酸可以有限地减少摩擦。在所有测试条件下,生物基离子液体的摩擦系数和磨损系数都最低。油酸和十二烷基胺作为混合添加剂,在两种成分等摩尔且振荡频率较高时可产生协同效应。对磨损轨迹的飞行时间二次离子质谱分析表明,摩擦过程增强了添加剂混合物的离子特性,从而改善了润滑性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tribological performance of fatty acid, acid/amine additive mixture and ionic liquid
Bio-based materials have attracted great attention from industry and academia in tribology because they are renewable, bio-degradable and easily accessible. This study aims to evaluate the efficiency of bio-based materials used both as neat lubricants and additives on friction and wear performance. The evaluated lubricants include oleic acid, a mixture containing oleic acid and dodecyl amine in hexadecane and a neat ionic liquid composed of oleic acid and dodecyl amine. The influence of the additive concentration, ratio between acid and amine, and oscillation frequency under reciprocating contacts has been investigated. Surface analysis was conducted by optical microscope, scanning electron microscopy and energy-dispersive X-ray spectroscopy, and time-of-flight secondary ion mass spectrometry. The results confirm that a small amount of oleic acid as an additive can provide limited friction reduction. Bio-based ionic liquid shows the lowest friction and wear coefficient in all testing conditions. A synergistic effect between oleic acid and dodecyl amine as an additive mixture has been observed when the two components are equimolar and the oscillating frequency is high. Time-of-flight secondary ion mass spectrometry analysis of the wear track indicates that the tribological process enhances the ionic character of the additive mixture, improving the lubrication performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simulation study on the effect of eccentricity on the performance of a reciprocating seal Research on dynamic and wear prediction models of compound planetary transmission systems Synthesis and tribological assessment of oil-based nanolubricants blended with nano-zeolite for steel–steel contact Design and analysis methods for aerostatic bearings: The past, the present, and the future Tribological performance of additive-manufactured aluminum alloy—effect of post-weld cold deformation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1