{"title":"卡松流体通过细针的混合对流","authors":"Darbhasayanam Srinivasacharya, Gorantla Saritha","doi":"10.37934/arfmts.116.2.88101","DOIUrl":null,"url":null,"abstract":"This paper deals with a steady mixed convection flow past a horizontal thin needle submerged in Casson fluid. The flow-governing equations are changed into a set of non-linear ordinary differential equations utilizing proper transforms. Employing successive linearization, the resulting equations are linearized, and then the Chebyshev spectral collocation technique is implemented. The effects of needle size and mixed convection parameter on stream on velocity and temperature, together with graphical representations of the coefficient of skin friction and local heat transfer rate, are presented. It is found that temperature decreases as needle size decreases but velocity, the coefficient of skin friction, and the Nusselt number improve for both aiding and opposing flow scenarios.","PeriodicalId":37460,"journal":{"name":"Journal of Advanced Research in Fluid Mechanics and Thermal Sciences","volume":"9 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mixed Convection Flow of a Casson Fluid Past a Thin Needle\",\"authors\":\"Darbhasayanam Srinivasacharya, Gorantla Saritha\",\"doi\":\"10.37934/arfmts.116.2.88101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with a steady mixed convection flow past a horizontal thin needle submerged in Casson fluid. The flow-governing equations are changed into a set of non-linear ordinary differential equations utilizing proper transforms. Employing successive linearization, the resulting equations are linearized, and then the Chebyshev spectral collocation technique is implemented. The effects of needle size and mixed convection parameter on stream on velocity and temperature, together with graphical representations of the coefficient of skin friction and local heat transfer rate, are presented. It is found that temperature decreases as needle size decreases but velocity, the coefficient of skin friction, and the Nusselt number improve for both aiding and opposing flow scenarios.\",\"PeriodicalId\":37460,\"journal\":{\"name\":\"Journal of Advanced Research in Fluid Mechanics and Thermal Sciences\",\"volume\":\"9 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Research in Fluid Mechanics and Thermal Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37934/arfmts.116.2.88101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Research in Fluid Mechanics and Thermal Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37934/arfmts.116.2.88101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
Mixed Convection Flow of a Casson Fluid Past a Thin Needle
This paper deals with a steady mixed convection flow past a horizontal thin needle submerged in Casson fluid. The flow-governing equations are changed into a set of non-linear ordinary differential equations utilizing proper transforms. Employing successive linearization, the resulting equations are linearized, and then the Chebyshev spectral collocation technique is implemented. The effects of needle size and mixed convection parameter on stream on velocity and temperature, together with graphical representations of the coefficient of skin friction and local heat transfer rate, are presented. It is found that temperature decreases as needle size decreases but velocity, the coefficient of skin friction, and the Nusselt number improve for both aiding and opposing flow scenarios.
期刊介绍:
This journal welcomes high-quality original contributions on experimental, computational, and physical aspects of fluid mechanics and thermal sciences relevant to engineering or the environment, multiphase and microscale flows, microscale electronic and mechanical systems; medical and biological systems; and thermal and flow control in both the internal and external environment.