利用 ML 和压力数据加强配水管网闸阀故障检测

Hyunjun Kim, Kwangjun Jung, Sumin Lee, Eunhye Jeong
{"title":"利用 ML 和压力数据加强配水管网闸阀故障检测","authors":"Hyunjun Kim, Kwangjun Jung, Sumin Lee, Eunhye Jeong","doi":"10.2166/aqua.2024.009","DOIUrl":null,"url":null,"abstract":"\n \n This study introduces an innovative diagnostic approach for identifying gate-valve failures in water distribution systems. By implementing high-frequency pressure sensors upstream and downstream of the gate valves, we obtained detailed pressure data that are pivotal for fault diagnosis. We explored three distinct machine-learning algorithms and two data-handling techniques to ensure optimal performance in real-world applications. In our methodology, supervised learning algorithms are used to analyze pressure differentials and predict valve behavior. We rigorously tested these algorithms using both raw and feature-engineered data, and the results indicated the effectiveness of the Gaussian-naïve Bayes model with six extracted features. This approach enhances the precision and reliability of diagnostics in water distribution networks.","PeriodicalId":513288,"journal":{"name":"AQUA — Water Infrastructure, Ecosystems and Society","volume":"146 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced gate-valve failure detection in water distribution networks using ML and pressure data\",\"authors\":\"Hyunjun Kim, Kwangjun Jung, Sumin Lee, Eunhye Jeong\",\"doi\":\"10.2166/aqua.2024.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n \\n This study introduces an innovative diagnostic approach for identifying gate-valve failures in water distribution systems. By implementing high-frequency pressure sensors upstream and downstream of the gate valves, we obtained detailed pressure data that are pivotal for fault diagnosis. We explored three distinct machine-learning algorithms and two data-handling techniques to ensure optimal performance in real-world applications. In our methodology, supervised learning algorithms are used to analyze pressure differentials and predict valve behavior. We rigorously tested these algorithms using both raw and feature-engineered data, and the results indicated the effectiveness of the Gaussian-naïve Bayes model with six extracted features. This approach enhances the precision and reliability of diagnostics in water distribution networks.\",\"PeriodicalId\":513288,\"journal\":{\"name\":\"AQUA — Water Infrastructure, Ecosystems and Society\",\"volume\":\"146 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AQUA — Water Infrastructure, Ecosystems and Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2166/aqua.2024.009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AQUA — Water Infrastructure, Ecosystems and Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/aqua.2024.009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究介绍了一种创新的诊断方法,用于识别配水系统中的闸阀故障。通过在闸阀上下游安装高频压力传感器,我们获得了对故障诊断至关重要的详细压力数据。我们探索了三种不同的机器学习算法和两种数据处理技术,以确保在实际应用中获得最佳性能。在我们的方法中,监督学习算法用于分析压力差和预测阀门行为。我们使用原始数据和特征工程数据对这些算法进行了严格测试,结果表明高斯-奈伊夫贝叶斯模型与六个提取特征模型的有效性。这种方法提高了配水管网诊断的精度和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhanced gate-valve failure detection in water distribution networks using ML and pressure data
This study introduces an innovative diagnostic approach for identifying gate-valve failures in water distribution systems. By implementing high-frequency pressure sensors upstream and downstream of the gate valves, we obtained detailed pressure data that are pivotal for fault diagnosis. We explored three distinct machine-learning algorithms and two data-handling techniques to ensure optimal performance in real-world applications. In our methodology, supervised learning algorithms are used to analyze pressure differentials and predict valve behavior. We rigorously tested these algorithms using both raw and feature-engineered data, and the results indicated the effectiveness of the Gaussian-naïve Bayes model with six extracted features. This approach enhances the precision and reliability of diagnostics in water distribution networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Photocatalytic performance of TiO2 modified with graphene derivatives and Fe (Ⅲ) at different thermal reduction temperatures Why do people save water? A systematic review of household water consumption behaviour in times of water availability uncertainty The socio-technical short-term implications of drinking water hoarding on supply reliability Hydraulic investigation of flows at high-head overflow spillway with multiple aerators: a physical and numerical study of Mohmand Dam, Pakistan Water quality ensemble prediction model for the urban water reservoir based on the hybrid long short-term memory (LSTM) network analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1