优化 B20 发动机,减少中型压燃式发动机的温室气体排放

IF 2 Q2 ENGINEERING, MECHANICAL Frontiers in Mechanical Engineering Pub Date : 2024-05-02 DOI:10.3389/fmech.2024.1376038
Taemin Kim, A. Boehman
{"title":"优化 B20 发动机,减少中型压燃式发动机的温室气体排放","authors":"Taemin Kim, A. Boehman","doi":"10.3389/fmech.2024.1376038","DOIUrl":null,"url":null,"abstract":"Soy-based biodiesel can reduce well-to-wheels greenhouse gas (GHG) emissions per unit energy (i.e., gCO2e/MJ) by 66%–72% as compared to the petroleum-based diesel fuel with currently adopted agricultural and industrial practices. Biodiesel can reduce particulate matter and carbon monoxide emissions with a manageable degree of increase in NOx emissions. From the perspective of GHG emissions reduction per unit travelling distance (i.e., gCO2e/mile), the application of B20 in compression ignition engines without the adjustment in engine control unit (ECU) settings will not extract the best carbon emissions reduction that B20 could achieve. Optimizing the engine control settings permits re-calibration to achieve the maximum brake fuel conversion efficiency (BFE) based on comprehensive understanding on the impact of both “fuel” and “ECU calibration” on BFE and other criteria pollutant emissions. The maximum GHG emissions reduction with B20 application is experimentally measured with the optimized ECU calibration, thus providing the understanding of the combined impact of biodiesel fuel and calibrations on engine performance and emissions. Six steady operating modes were considered, that can be combined to estimate the US federal test procedure BFE and emissions over the Federal Test Protocol (FTP) 75 cycle. Combined with the weight factors to simulate the EPA FTP 75 cycle from these 6 “mini-map” test points, 0.53% improvement in the energy requirement per unit traveling distance (i.e., MJ/mile) is achieved for B20 with the final ECU calibration, in addition to the degree of GHG emissions reduction on a “gCO2e/MJ” basis from the use of B20 blend of soy biodiesel of ∼12.5% reduction in gCO2e/MJ, for a total GHG emissions reduction of 13%.","PeriodicalId":53220,"journal":{"name":"Frontiers in Mechanical Engineering","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Greenhouse gas reduction in a medium-duty compression ignition engine with optimization for B20\",\"authors\":\"Taemin Kim, A. Boehman\",\"doi\":\"10.3389/fmech.2024.1376038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Soy-based biodiesel can reduce well-to-wheels greenhouse gas (GHG) emissions per unit energy (i.e., gCO2e/MJ) by 66%–72% as compared to the petroleum-based diesel fuel with currently adopted agricultural and industrial practices. Biodiesel can reduce particulate matter and carbon monoxide emissions with a manageable degree of increase in NOx emissions. From the perspective of GHG emissions reduction per unit travelling distance (i.e., gCO2e/mile), the application of B20 in compression ignition engines without the adjustment in engine control unit (ECU) settings will not extract the best carbon emissions reduction that B20 could achieve. Optimizing the engine control settings permits re-calibration to achieve the maximum brake fuel conversion efficiency (BFE) based on comprehensive understanding on the impact of both “fuel” and “ECU calibration” on BFE and other criteria pollutant emissions. The maximum GHG emissions reduction with B20 application is experimentally measured with the optimized ECU calibration, thus providing the understanding of the combined impact of biodiesel fuel and calibrations on engine performance and emissions. Six steady operating modes were considered, that can be combined to estimate the US federal test procedure BFE and emissions over the Federal Test Protocol (FTP) 75 cycle. Combined with the weight factors to simulate the EPA FTP 75 cycle from these 6 “mini-map” test points, 0.53% improvement in the energy requirement per unit traveling distance (i.e., MJ/mile) is achieved for B20 with the final ECU calibration, in addition to the degree of GHG emissions reduction on a “gCO2e/MJ” basis from the use of B20 blend of soy biodiesel of ∼12.5% reduction in gCO2e/MJ, for a total GHG emissions reduction of 13%.\",\"PeriodicalId\":53220,\"journal\":{\"name\":\"Frontiers in Mechanical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Mechanical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fmech.2024.1376038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fmech.2024.1376038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

与目前采用的农业和工业实践中的石油基柴油相比,以大豆为基础的生物柴油可将单位能量(即 gCO2e/MJ)从油井到车轮的温室气体(GHG)排放量减少 66%-72% 。生物柴油可减少微粒物质和一氧化碳的排放,而氮氧化物排放的增加则在可控范围内。从减少单位行驶距离的温室气体排放量(即 gCO2e/mile)的角度来看,在不调整发动机控制单元(ECU)设置的情况下,在压燃式发动机中使用 B20 无法达到 B20 可以实现的最佳碳减排效果。在全面了解 "燃料 "和 "ECU 校准 "对制动燃油转换效率和其他标准污染物排放的影响的基础上,优化发动机控制设置允许重新校准,以实现最大制动燃油转换效率(BFE)。通过优化 ECU 标定,实验测量了 B20 应用的最大温室气体减排量,从而了解了生物柴油燃料和标定对发动机性能和排放的综合影响。考虑了六种稳定的运行模式,将其结合起来可以估算出美国联邦测试程序 BFE 和联邦测试协议 (FTP) 75 周期内的排放量。结合从这 6 个 "小地图 "测试点模拟 EPA FTP 75 循环的权重系数,使用 B20 调和大豆生物柴油的最终 ECU 标定可使单位行驶距离的能量需求(即 MJ/英里)提高 0.53%,此外,按 "gCO2e/MJ "计算,使用 B20 调和大豆生物柴油的温室气体排放量减少了 12.5%,温室气体总排放量减少了 13%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Greenhouse gas reduction in a medium-duty compression ignition engine with optimization for B20
Soy-based biodiesel can reduce well-to-wheels greenhouse gas (GHG) emissions per unit energy (i.e., gCO2e/MJ) by 66%–72% as compared to the petroleum-based diesel fuel with currently adopted agricultural and industrial practices. Biodiesel can reduce particulate matter and carbon monoxide emissions with a manageable degree of increase in NOx emissions. From the perspective of GHG emissions reduction per unit travelling distance (i.e., gCO2e/mile), the application of B20 in compression ignition engines without the adjustment in engine control unit (ECU) settings will not extract the best carbon emissions reduction that B20 could achieve. Optimizing the engine control settings permits re-calibration to achieve the maximum brake fuel conversion efficiency (BFE) based on comprehensive understanding on the impact of both “fuel” and “ECU calibration” on BFE and other criteria pollutant emissions. The maximum GHG emissions reduction with B20 application is experimentally measured with the optimized ECU calibration, thus providing the understanding of the combined impact of biodiesel fuel and calibrations on engine performance and emissions. Six steady operating modes were considered, that can be combined to estimate the US federal test procedure BFE and emissions over the Federal Test Protocol (FTP) 75 cycle. Combined with the weight factors to simulate the EPA FTP 75 cycle from these 6 “mini-map” test points, 0.53% improvement in the energy requirement per unit traveling distance (i.e., MJ/mile) is achieved for B20 with the final ECU calibration, in addition to the degree of GHG emissions reduction on a “gCO2e/MJ” basis from the use of B20 blend of soy biodiesel of ∼12.5% reduction in gCO2e/MJ, for a total GHG emissions reduction of 13%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Mechanical Engineering
Frontiers in Mechanical Engineering Engineering-Industrial and Manufacturing Engineering
CiteScore
4.40
自引率
0.00%
发文量
115
审稿时长
14 weeks
期刊最新文献
Finite element analysis and automation of a medium scale grinder applied to the manufacture of cassava starch Editorial: Lightweight mechanical and aerospace structures and materials Analysis of the thickness of layered armor to provide protection against 7.62 mm ball projectiles using experimental and numerical methods Parameter fuzzy rectification for sliding mode control of five-phase permanent magnet synchronous motor speed control system Surrogate-based worst-case analysis of a knee joint model using Genetic Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1