利用移动 NER 实时获取临床对话中的症状、诊断和治疗信息

Rafik Rhouma , Christopher McMahon , Donald Mcgillivray , Hassan Massood , Safia Kanwal , Meraj Khan , Thomas Lo , Jean-Paul Lam , Christopher Smith
{"title":"利用移动 NER 实时获取临床对话中的症状、诊断和治疗信息","authors":"Rafik Rhouma ,&nbsp;Christopher McMahon ,&nbsp;Donald Mcgillivray ,&nbsp;Hassan Massood ,&nbsp;Safia Kanwal ,&nbsp;Meraj Khan ,&nbsp;Thomas Lo ,&nbsp;Jean-Paul Lam ,&nbsp;Christopher Smith","doi":"10.1016/j.imu.2024.101519","DOIUrl":null,"url":null,"abstract":"<div><p>In the dynamic world of healthcare technology, efficiently and accurately extracting medical data from physician–patient conversations is vital. This paper presents a new approach in healthcare technology, employing Natural Language Processing (NLP) to identify and extract critical information from doctor–patient conversations on mobile devices. Unlike traditional methods that rely on Electronic Health Records, our novel application enables the extraction of symptoms, diagnoses, and treatments directly on a mobile device during medical consultations, significantly enhancing patient privacy. We managed to integrate both Bidirectional Encoder Representations from Transformers (BERT) models and optimized Large Language Models (LLMs) on a mobile device without compromising performance significantly. Our findings reveal that the BERT model attained an F1-score of 85.1%, while FLERT and its compressed variant DistilFLERT showed superior performance. The FLAN-T5 model outperformed all models we tested with scores up to 92.7%. These results highlight the efficacy of leveraging advanced NLP and LLM technologies in healthcare environments on a mobile device, offering a promising direction for accessible and efficient patient care.</p></div>","PeriodicalId":13953,"journal":{"name":"Informatics in Medicine Unlocked","volume":"48 ","pages":"Article 101519"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352914824000753/pdfft?md5=dcf02a1406246b404d5d886e23c7d375&pid=1-s2.0-S2352914824000753-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Leveraging mobile NER for real-time capture of symptoms, diagnoses, and treatments from clinical dialogues\",\"authors\":\"Rafik Rhouma ,&nbsp;Christopher McMahon ,&nbsp;Donald Mcgillivray ,&nbsp;Hassan Massood ,&nbsp;Safia Kanwal ,&nbsp;Meraj Khan ,&nbsp;Thomas Lo ,&nbsp;Jean-Paul Lam ,&nbsp;Christopher Smith\",\"doi\":\"10.1016/j.imu.2024.101519\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the dynamic world of healthcare technology, efficiently and accurately extracting medical data from physician–patient conversations is vital. This paper presents a new approach in healthcare technology, employing Natural Language Processing (NLP) to identify and extract critical information from doctor–patient conversations on mobile devices. Unlike traditional methods that rely on Electronic Health Records, our novel application enables the extraction of symptoms, diagnoses, and treatments directly on a mobile device during medical consultations, significantly enhancing patient privacy. We managed to integrate both Bidirectional Encoder Representations from Transformers (BERT) models and optimized Large Language Models (LLMs) on a mobile device without compromising performance significantly. Our findings reveal that the BERT model attained an F1-score of 85.1%, while FLERT and its compressed variant DistilFLERT showed superior performance. The FLAN-T5 model outperformed all models we tested with scores up to 92.7%. These results highlight the efficacy of leveraging advanced NLP and LLM technologies in healthcare environments on a mobile device, offering a promising direction for accessible and efficient patient care.</p></div>\",\"PeriodicalId\":13953,\"journal\":{\"name\":\"Informatics in Medicine Unlocked\",\"volume\":\"48 \",\"pages\":\"Article 101519\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2352914824000753/pdfft?md5=dcf02a1406246b404d5d886e23c7d375&pid=1-s2.0-S2352914824000753-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Informatics in Medicine Unlocked\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352914824000753\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informatics in Medicine Unlocked","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352914824000753","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

在医疗保健技术日新月异的今天,从医患对话中高效、准确地提取医疗数据至关重要。本文介绍了医疗保健技术领域的一种新方法,即利用自然语言处理(NLP)技术从移动设备上的医患对话中识别和提取关键信息。与依赖电子健康记录的传统方法不同,我们的新型应用能够在医疗咨询过程中直接在移动设备上提取症状、诊断和治疗信息,从而大大提高了患者的隐私保护。我们成功地在移动设备上集成了来自变换器的双向编码器表征(BERT)模型和优化的大型语言模型(LLM),而不会明显影响性能。我们的研究结果表明,BERT 模型的 F1 分数达到了 85.1%,而 FLERT 及其压缩变体 DistilFLERT 则表现出卓越的性能。FLAN-T5 模型的表现优于我们测试的所有模型,得分率高达 92.7%。这些结果凸显了在移动设备上利用先进的 NLP 和 LLM 技术在医疗保健环境中的功效,为实现无障碍和高效的病人护理提供了一个前景广阔的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Leveraging mobile NER for real-time capture of symptoms, diagnoses, and treatments from clinical dialogues

In the dynamic world of healthcare technology, efficiently and accurately extracting medical data from physician–patient conversations is vital. This paper presents a new approach in healthcare technology, employing Natural Language Processing (NLP) to identify and extract critical information from doctor–patient conversations on mobile devices. Unlike traditional methods that rely on Electronic Health Records, our novel application enables the extraction of symptoms, diagnoses, and treatments directly on a mobile device during medical consultations, significantly enhancing patient privacy. We managed to integrate both Bidirectional Encoder Representations from Transformers (BERT) models and optimized Large Language Models (LLMs) on a mobile device without compromising performance significantly. Our findings reveal that the BERT model attained an F1-score of 85.1%, while FLERT and its compressed variant DistilFLERT showed superior performance. The FLAN-T5 model outperformed all models we tested with scores up to 92.7%. These results highlight the efficacy of leveraging advanced NLP and LLM technologies in healthcare environments on a mobile device, offering a promising direction for accessible and efficient patient care.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Informatics in Medicine Unlocked
Informatics in Medicine Unlocked Medicine-Health Informatics
CiteScore
9.50
自引率
0.00%
发文量
282
审稿时长
39 days
期刊介绍: Informatics in Medicine Unlocked (IMU) is an international gold open access journal covering a broad spectrum of topics within medical informatics, including (but not limited to) papers focusing on imaging, pathology, teledermatology, public health, ophthalmological, nursing and translational medicine informatics. The full papers that are published in the journal are accessible to all who visit the website.
期刊最新文献
Usability and accessibility in mHealth stroke apps: An empirical assessment Spatiotemporal chest wall movement analysis using depth sensor imaging for detecting respiratory asynchrony Regression and classification of Windkessel parameters from non-invasive cardiovascular quantities using a fully connected neural network Patient2Trial: From patient to participant in clinical trials using large language models Structural modification of Naproxen; physicochemical, spectral, medicinal, and pharmacological evaluation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1