{"title":"用于电动预载齿轮齿条驱动系统的双电机位置反馈控制,可提高精确度","authors":"","doi":"10.1016/j.cirp.2024.04.087","DOIUrl":null,"url":null,"abstract":"<div><p>To increase the accuracy of indirect position-controlled dual motor rack-and-pinion drives, a new approach is being proposed that uses the encoders of both motors on a test bench. By electrically preloading these motors, backlash does not occur simultaneously in both drive trains. Continuous contact between the pinion and rack and thus force-transmission to the table is ensured, by switching away from the signal with backlash. Backlash is therefore eliminated from the control loop and the system accuracy without direct table position sensing can be increased. Experiments show that the tracking error is reduced by 59 % compared to indirect control.</p></div>","PeriodicalId":55256,"journal":{"name":"Cirp Annals-Manufacturing Technology","volume":"73 1","pages":"Pages 313-316"},"PeriodicalIF":3.2000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0007850624001008/pdfft?md5=00f6dd05fe1dff734f8678e630ffbc5e&pid=1-s2.0-S0007850624001008-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Dual motor position feedback control for electrically preloaded rack-and-pinion drive systems to increase accuracy\",\"authors\":\"\",\"doi\":\"10.1016/j.cirp.2024.04.087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To increase the accuracy of indirect position-controlled dual motor rack-and-pinion drives, a new approach is being proposed that uses the encoders of both motors on a test bench. By electrically preloading these motors, backlash does not occur simultaneously in both drive trains. Continuous contact between the pinion and rack and thus force-transmission to the table is ensured, by switching away from the signal with backlash. Backlash is therefore eliminated from the control loop and the system accuracy without direct table position sensing can be increased. Experiments show that the tracking error is reduced by 59 % compared to indirect control.</p></div>\",\"PeriodicalId\":55256,\"journal\":{\"name\":\"Cirp Annals-Manufacturing Technology\",\"volume\":\"73 1\",\"pages\":\"Pages 313-316\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0007850624001008/pdfft?md5=00f6dd05fe1dff734f8678e630ffbc5e&pid=1-s2.0-S0007850624001008-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cirp Annals-Manufacturing Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0007850624001008\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cirp Annals-Manufacturing Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007850624001008","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
Dual motor position feedback control for electrically preloaded rack-and-pinion drive systems to increase accuracy
To increase the accuracy of indirect position-controlled dual motor rack-and-pinion drives, a new approach is being proposed that uses the encoders of both motors on a test bench. By electrically preloading these motors, backlash does not occur simultaneously in both drive trains. Continuous contact between the pinion and rack and thus force-transmission to the table is ensured, by switching away from the signal with backlash. Backlash is therefore eliminated from the control loop and the system accuracy without direct table position sensing can be increased. Experiments show that the tracking error is reduced by 59 % compared to indirect control.
期刊介绍:
CIRP, The International Academy for Production Engineering, was founded in 1951 to promote, by scientific research, the development of all aspects of manufacturing technology covering the optimization, control and management of processes, machines and systems.
This biannual ISI cited journal contains approximately 140 refereed technical and keynote papers. Subject areas covered include:
Assembly, Cutting, Design, Electro-Physical and Chemical Processes, Forming, Abrasive processes, Surfaces, Machines, Production Systems and Organizations, Precision Engineering and Metrology, Life-Cycle Engineering, Microsystems Technology (MST), Nanotechnology.