用于缓解激光诱导加热中表面温度不稳定性的新型热解算器

IF 1.7 4区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Laser Applications Pub Date : 2024-05-01 DOI:10.2351/7.0001201
Xun Zhu, Kaushik Iyer, Darren Luke
{"title":"用于缓解激光诱导加热中表面温度不稳定性的新型热解算器","authors":"Xun Zhu, Kaushik Iyer, Darren Luke","doi":"10.2351/7.0001201","DOIUrl":null,"url":null,"abstract":"An accepted approach to computing laser-induced peak surface temperature is to employ the enthalpy formulation of the transient heat conduction equation [Grigoropoulos et al., Adv. Heat Transfer 28, 75–144 (1996); Sawyer et al., J. Laser Appl. 29, 022212 (2017)]. This approach is generally implemented using an explicit numerical scheme to solve the thermal transport equation. While it offers the advantage of modeling the solid-melt phase transition automatically, the approach results in instability-like behavior in the computed surface temperature. When laser-induced ablation becomes significant, the heating rate in the surface cell becomes unrealistically large. This results in spikes in the computed peak surface temperature due to large errors in calculating the heating rate. In this paper, we present a new approach, which we refer to as the Moving Frame Solver, that employs a moving-coordinate frame of reference, located at the receding evaporating surface. We also use an analytical representation for the phase transition region of the enthalpy-temperature relationship. The Moving Frame Solver combined with an implicit scheme leads to a stable solution without surface temperature, pressure, or velocity spikes. In other words, any instability in these computed parameters due to use of an explicit scheme (such as Dufort–Frankel) has been eliminated. Details of the new thermal solver and example calculations are presented. Numerical experiments suggest that the surface cell size needs to be small, ∼0.1 μm, to obtain a highly accurate solution with a typical metal such as aluminum. Using the Moving Frame Solver with a refined grid near the surface, but coarse elsewhere, enables accurate and stable surface temperature computation.","PeriodicalId":50168,"journal":{"name":"Journal of Laser Applications","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New thermal solver for mitigating surface temperature instability in laser-induced heating\",\"authors\":\"Xun Zhu, Kaushik Iyer, Darren Luke\",\"doi\":\"10.2351/7.0001201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An accepted approach to computing laser-induced peak surface temperature is to employ the enthalpy formulation of the transient heat conduction equation [Grigoropoulos et al., Adv. Heat Transfer 28, 75–144 (1996); Sawyer et al., J. Laser Appl. 29, 022212 (2017)]. This approach is generally implemented using an explicit numerical scheme to solve the thermal transport equation. While it offers the advantage of modeling the solid-melt phase transition automatically, the approach results in instability-like behavior in the computed surface temperature. When laser-induced ablation becomes significant, the heating rate in the surface cell becomes unrealistically large. This results in spikes in the computed peak surface temperature due to large errors in calculating the heating rate. In this paper, we present a new approach, which we refer to as the Moving Frame Solver, that employs a moving-coordinate frame of reference, located at the receding evaporating surface. We also use an analytical representation for the phase transition region of the enthalpy-temperature relationship. The Moving Frame Solver combined with an implicit scheme leads to a stable solution without surface temperature, pressure, or velocity spikes. In other words, any instability in these computed parameters due to use of an explicit scheme (such as Dufort–Frankel) has been eliminated. Details of the new thermal solver and example calculations are presented. Numerical experiments suggest that the surface cell size needs to be small, ∼0.1 μm, to obtain a highly accurate solution with a typical metal such as aluminum. Using the Moving Frame Solver with a refined grid near the surface, but coarse elsewhere, enables accurate and stable surface temperature computation.\",\"PeriodicalId\":50168,\"journal\":{\"name\":\"Journal of Laser Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Laser Applications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2351/7.0001201\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Laser Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2351/7.0001201","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

计算激光诱导峰值表面温度的一种公认方法是采用瞬态热传导方程的焓公式[Grigoropoulos 等人,Adv. Heat Transfer 28, 75-144 (1996);Sawyer 等人,J. Laser Appl. 29, 022212 (2017)]。这种方法通常使用显式数值方案来求解热传输方程。虽然这种方法具有自动模拟固熔相变的优点,但会导致计算表面温度出现类似不稳定的行为。当激光诱导烧蚀变得显著时,表面单元中的加热速率会变得不切实际地大。由于计算加热速率时存在较大误差,这导致计算出的峰值表面温度出现尖峰。在本文中,我们提出了一种新方法,我们称之为移动框架求解器,它采用了位于后退蒸发表面的移动坐标参考框架。我们还对焓温关系的相变区域使用了分析表示法。移动坐标系求解器与隐式方案相结合,得到了一个稳定的解决方案,没有表面温度、压力或速度峰值。换句话说,由于使用显式方案(如杜福-弗兰科尔方案)而导致的这些计算参数的不稳定性已经消除。本文介绍了新热解算器的详细信息和计算示例。数值实验表明,对于铝等典型金属,表面单元尺寸必须小到 0.1 μm,才能获得高精度的求解。使用移动框架求解器,在表面附近使用细化网格,而在其他地方使用粗网格,可以获得精确稳定的表面温度计算结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
New thermal solver for mitigating surface temperature instability in laser-induced heating
An accepted approach to computing laser-induced peak surface temperature is to employ the enthalpy formulation of the transient heat conduction equation [Grigoropoulos et al., Adv. Heat Transfer 28, 75–144 (1996); Sawyer et al., J. Laser Appl. 29, 022212 (2017)]. This approach is generally implemented using an explicit numerical scheme to solve the thermal transport equation. While it offers the advantage of modeling the solid-melt phase transition automatically, the approach results in instability-like behavior in the computed surface temperature. When laser-induced ablation becomes significant, the heating rate in the surface cell becomes unrealistically large. This results in spikes in the computed peak surface temperature due to large errors in calculating the heating rate. In this paper, we present a new approach, which we refer to as the Moving Frame Solver, that employs a moving-coordinate frame of reference, located at the receding evaporating surface. We also use an analytical representation for the phase transition region of the enthalpy-temperature relationship. The Moving Frame Solver combined with an implicit scheme leads to a stable solution without surface temperature, pressure, or velocity spikes. In other words, any instability in these computed parameters due to use of an explicit scheme (such as Dufort–Frankel) has been eliminated. Details of the new thermal solver and example calculations are presented. Numerical experiments suggest that the surface cell size needs to be small, ∼0.1 μm, to obtain a highly accurate solution with a typical metal such as aluminum. Using the Moving Frame Solver with a refined grid near the surface, but coarse elsewhere, enables accurate and stable surface temperature computation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.60
自引率
9.50%
发文量
125
审稿时长
>12 weeks
期刊介绍: The Journal of Laser Applications (JLA) is the scientific platform of the Laser Institute of America (LIA) and is published in cooperation with AIP Publishing. The high-quality articles cover a broad range from fundamental and applied research and development to industrial applications. Therefore, JLA is a reflection of the state-of-R&D in photonic production, sensing and measurement as well as Laser safety. The following international and well known first-class scientists serve as allocated Editors in 9 new categories: High Precision Materials Processing with Ultrafast Lasers Laser Additive Manufacturing High Power Materials Processing with High Brightness Lasers Emerging Applications of Laser Technologies in High-performance/Multi-function Materials and Structures Surface Modification Lasers in Nanomanufacturing / Nanophotonics & Thin Film Technology Spectroscopy / Imaging / Diagnostics / Measurements Laser Systems and Markets Medical Applications & Safety Thermal Transportation Nanomaterials and Nanoprocessing Laser applications in Microelectronics.
期刊最新文献
Research on a visual positioning method of paddy field weeding wheels based on laser rangefinder-camera calibration New thermal solver for mitigating surface temperature instability in laser-induced heating Statistical modeling and optimization of clad geometry in laser cladding of Amdry 961 on Inconel 713LC superalloy with response surface methodology Novel path planning algorithm for laser powder bed fusion to improve the scan quality of triply periodic minimal surface structures Laser hazard classification of a line laser with an astigmatic extended source
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1