A. Khoironi, Leony Christine Manurung, R. A. Baihaqi, E. Hartini, Lenci Aryani, Fitria Wulandari, H. Hadiyanto
{"title":"一次性口罩废料对黄土质量的影响","authors":"A. Khoironi, Leony Christine Manurung, R. A. Baihaqi, E. Hartini, Lenci Aryani, Fitria Wulandari, H. Hadiyanto","doi":"10.12911/22998993/186529","DOIUrl":null,"url":null,"abstract":"The COVID-19 outbreak has significantly raised the amount of single-use mask waste in Indonesia. This research intends to assess the effect of single-use mask waste on the quality of loamy soil. The investigation involved con - structing a prototype using a 28–cm high column of 19 cm of loamy soil. The study utilized single-use masks in the soil, in which Chili plants were grown on the soil surface. Clean water was employed for the leaching process over 45 days. Soil samples from control, R1, R2, and R3 reactors were analyzed in the laboratory using X-ray fluores - cence (XRF) testing and microplastic identification in groundwater. The research findings reveal a notable decline in macro and micronutrients, namely a 1.22% decrease in silicon minerals caused by microplastics interfering with plant metabolic processes. The increase in microplastics caused higher microorganism mortality, leading to a 10.18% decrease in organic carbon content and a 1.47% reduction in soil porosity. Microplastics were discovered in the loamy soil of an average size of 0.3 ± 1.34 mm. Changes in nutrient concentrations and physical properties of the soil indicate that introducing microplastics into loamy soil through mask waste can alter soil characteristics. Additional research is required to investigate the disposal of single-use mask waste due to the ongoing high utilization of disposable masks as personal safety equipment.","PeriodicalId":15652,"journal":{"name":"Journal of Ecological Engineering","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Impact of Single-Use Mask Waste on the Quality of Loamy Soil\",\"authors\":\"A. Khoironi, Leony Christine Manurung, R. A. Baihaqi, E. Hartini, Lenci Aryani, Fitria Wulandari, H. Hadiyanto\",\"doi\":\"10.12911/22998993/186529\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The COVID-19 outbreak has significantly raised the amount of single-use mask waste in Indonesia. This research intends to assess the effect of single-use mask waste on the quality of loamy soil. The investigation involved con - structing a prototype using a 28–cm high column of 19 cm of loamy soil. The study utilized single-use masks in the soil, in which Chili plants were grown on the soil surface. Clean water was employed for the leaching process over 45 days. Soil samples from control, R1, R2, and R3 reactors were analyzed in the laboratory using X-ray fluores - cence (XRF) testing and microplastic identification in groundwater. The research findings reveal a notable decline in macro and micronutrients, namely a 1.22% decrease in silicon minerals caused by microplastics interfering with plant metabolic processes. The increase in microplastics caused higher microorganism mortality, leading to a 10.18% decrease in organic carbon content and a 1.47% reduction in soil porosity. Microplastics were discovered in the loamy soil of an average size of 0.3 ± 1.34 mm. Changes in nutrient concentrations and physical properties of the soil indicate that introducing microplastics into loamy soil through mask waste can alter soil characteristics. Additional research is required to investigate the disposal of single-use mask waste due to the ongoing high utilization of disposable masks as personal safety equipment.\",\"PeriodicalId\":15652,\"journal\":{\"name\":\"Journal of Ecological Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Ecological Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12911/22998993/186529\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ecological Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12911/22998993/186529","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
The Impact of Single-Use Mask Waste on the Quality of Loamy Soil
The COVID-19 outbreak has significantly raised the amount of single-use mask waste in Indonesia. This research intends to assess the effect of single-use mask waste on the quality of loamy soil. The investigation involved con - structing a prototype using a 28–cm high column of 19 cm of loamy soil. The study utilized single-use masks in the soil, in which Chili plants were grown on the soil surface. Clean water was employed for the leaching process over 45 days. Soil samples from control, R1, R2, and R3 reactors were analyzed in the laboratory using X-ray fluores - cence (XRF) testing and microplastic identification in groundwater. The research findings reveal a notable decline in macro and micronutrients, namely a 1.22% decrease in silicon minerals caused by microplastics interfering with plant metabolic processes. The increase in microplastics caused higher microorganism mortality, leading to a 10.18% decrease in organic carbon content and a 1.47% reduction in soil porosity. Microplastics were discovered in the loamy soil of an average size of 0.3 ± 1.34 mm. Changes in nutrient concentrations and physical properties of the soil indicate that introducing microplastics into loamy soil through mask waste can alter soil characteristics. Additional research is required to investigate the disposal of single-use mask waste due to the ongoing high utilization of disposable masks as personal safety equipment.
期刊介绍:
- Industrial and municipal waste management - Pro-ecological technologies and products - Energy-saving technologies - Environmental landscaping - Environmental monitoring - Climate change in the environment - Sustainable development - Processing and usage of mineral resources - Recovery of valuable materials and fuels - Surface water and groundwater management - Water and wastewater treatment - Smog and air pollution prevention - Protection and reclamation of soils - Reclamation and revitalization of degraded areas - Heavy metals in the environment - Renewable energy technologies - Environmental protection of rural areas - Restoration and protection of urban environment - Prevention of noise in the environment - Environmental life-cycle assessment (LCA) - Simulations and computer modeling for the environment