H. Tankisi , H. Bostock , S.V. Tan , J. Howells , K. Ng , W.J. Z'Graggen
{"title":"肌肉兴奋性测试","authors":"H. Tankisi , H. Bostock , S.V. Tan , J. Howells , K. Ng , W.J. Z'Graggen","doi":"10.1016/j.clinph.2024.04.022","DOIUrl":null,"url":null,"abstract":"<div><p>Conventional electrophysiological methods, i.e. nerve conduction studies and electromyography are suitable methods for the diagnosis of neuromuscular disorders, however, they provide limited information about muscle fibre membrane properties and underlying disease mechanisms. Muscle excitability testing is a technique that provides <em>in vivo</em> information about muscle fibre membrane properties such as membrane potential and ion channel function.</p><p>Since the 1960s, various methodologies have been suggested to examine muscle membrane properties but technical difficulties have limited its use. In 2009, an automated, fast and simple application, the so-called multi-fibre muscle velocity recovery cycles (MVRC) has accelerated the use of muscle excitability testing. Later, frequency ramp and repetitive stimulation protocols have been developed. Though this method has been used mainly in research for revealing disease mechanisms across a broad range of neuromuscular disorders, it may have additional diagnostic uses; value has been shown particularly in muscle channelopathies.</p><p>This review will provide a description of the state-of-the art of methodological and clinical studies for muscle excitability testing.</p></div>","PeriodicalId":10671,"journal":{"name":"Clinical Neurophysiology","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1388245724001482/pdfft?md5=3608c79030d4d0133d7b44d0e3408e3d&pid=1-s2.0-S1388245724001482-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Muscle excitability testing\",\"authors\":\"H. Tankisi , H. Bostock , S.V. Tan , J. Howells , K. Ng , W.J. Z'Graggen\",\"doi\":\"10.1016/j.clinph.2024.04.022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Conventional electrophysiological methods, i.e. nerve conduction studies and electromyography are suitable methods for the diagnosis of neuromuscular disorders, however, they provide limited information about muscle fibre membrane properties and underlying disease mechanisms. Muscle excitability testing is a technique that provides <em>in vivo</em> information about muscle fibre membrane properties such as membrane potential and ion channel function.</p><p>Since the 1960s, various methodologies have been suggested to examine muscle membrane properties but technical difficulties have limited its use. In 2009, an automated, fast and simple application, the so-called multi-fibre muscle velocity recovery cycles (MVRC) has accelerated the use of muscle excitability testing. Later, frequency ramp and repetitive stimulation protocols have been developed. Though this method has been used mainly in research for revealing disease mechanisms across a broad range of neuromuscular disorders, it may have additional diagnostic uses; value has been shown particularly in muscle channelopathies.</p><p>This review will provide a description of the state-of-the art of methodological and clinical studies for muscle excitability testing.</p></div>\",\"PeriodicalId\":10671,\"journal\":{\"name\":\"Clinical Neurophysiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1388245724001482/pdfft?md5=3608c79030d4d0133d7b44d0e3408e3d&pid=1-s2.0-S1388245724001482-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical Neurophysiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1388245724001482\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Neurophysiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1388245724001482","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Conventional electrophysiological methods, i.e. nerve conduction studies and electromyography are suitable methods for the diagnosis of neuromuscular disorders, however, they provide limited information about muscle fibre membrane properties and underlying disease mechanisms. Muscle excitability testing is a technique that provides in vivo information about muscle fibre membrane properties such as membrane potential and ion channel function.
Since the 1960s, various methodologies have been suggested to examine muscle membrane properties but technical difficulties have limited its use. In 2009, an automated, fast and simple application, the so-called multi-fibre muscle velocity recovery cycles (MVRC) has accelerated the use of muscle excitability testing. Later, frequency ramp and repetitive stimulation protocols have been developed. Though this method has been used mainly in research for revealing disease mechanisms across a broad range of neuromuscular disorders, it may have additional diagnostic uses; value has been shown particularly in muscle channelopathies.
This review will provide a description of the state-of-the art of methodological and clinical studies for muscle excitability testing.
期刊介绍:
As of January 1999, The journal Electroencephalography and Clinical Neurophysiology, and its two sections Electromyography and Motor Control and Evoked Potentials have amalgamated to become this journal - Clinical Neurophysiology.
Clinical Neurophysiology is the official journal of the International Federation of Clinical Neurophysiology, the Brazilian Society of Clinical Neurophysiology, the Czech Society of Clinical Neurophysiology, the Italian Clinical Neurophysiology Society and the International Society of Intraoperative Neurophysiology.The journal is dedicated to fostering research and disseminating information on all aspects of both normal and abnormal functioning of the nervous system. The key aim of the publication is to disseminate scholarly reports on the pathophysiology underlying diseases of the central and peripheral nervous system of human patients. Clinical trials that use neurophysiological measures to document change are encouraged, as are manuscripts reporting data on integrated neuroimaging of central nervous function including, but not limited to, functional MRI, MEG, EEG, PET and other neuroimaging modalities.