Dongmei Lian , Xin Liu , Edward A. Laws , Tongtong Liu , Jingxiao Wang , Shaoling Shang , Zhongping Lee
{"title":"南太平洋环流中心太阳辐射与叶绿素浓度之间的 \"梯形 \"关系","authors":"Dongmei Lian , Xin Liu , Edward A. Laws , Tongtong Liu , Jingxiao Wang , Shaoling Shang , Zhongping Lee","doi":"10.1016/j.pocean.2024.103281","DOIUrl":null,"url":null,"abstract":"<div><p>Understanding the driving mechanism of phytoplankton dynamics is key to forecasting future changes in the ocean. Here, we report an apparent “trapezoidal” relationship between chlorophyll concentrations (Chl) and surface photosynthetically available radiation (PAR(0)) at the center of the South Pacific Gyre (cSPG) based on 18 years of MODIS Aqua measurements. A comparison of Chl with a photoacclimation model revealed that photoacclimation alone could not explain the temporal dynamics of Chl. Instead, the Chl dynamics were explained by a combination of photoacclimation, nutrient limitation, and the grazing pressure of zooplankton at different times throughout the year. An annual “trapezoidal” spiral relationship between Chl and PAR(0) suggested that the steady state of phytoplankton populations at the cSPG could be influenced by the alternation of co-regulation mechanisms during a year. Because this same pattern occurs in other subtropical gyres, this understanding of the underlying mechanisms not only facilitates simulating and forecasting phytoplankton dynamics but also provides a new perspective on how multiple stressors may impact phytoplankton communities in a warmer climate.</p></div>","PeriodicalId":20620,"journal":{"name":"Progress in Oceanography","volume":"225 ","pages":"Article 103281"},"PeriodicalIF":3.8000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A “trapezoidal” relationship between solar radiation and chlorophyll concentrations at the center of the South Pacific Gyre\",\"authors\":\"Dongmei Lian , Xin Liu , Edward A. Laws , Tongtong Liu , Jingxiao Wang , Shaoling Shang , Zhongping Lee\",\"doi\":\"10.1016/j.pocean.2024.103281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Understanding the driving mechanism of phytoplankton dynamics is key to forecasting future changes in the ocean. Here, we report an apparent “trapezoidal” relationship between chlorophyll concentrations (Chl) and surface photosynthetically available radiation (PAR(0)) at the center of the South Pacific Gyre (cSPG) based on 18 years of MODIS Aqua measurements. A comparison of Chl with a photoacclimation model revealed that photoacclimation alone could not explain the temporal dynamics of Chl. Instead, the Chl dynamics were explained by a combination of photoacclimation, nutrient limitation, and the grazing pressure of zooplankton at different times throughout the year. An annual “trapezoidal” spiral relationship between Chl and PAR(0) suggested that the steady state of phytoplankton populations at the cSPG could be influenced by the alternation of co-regulation mechanisms during a year. Because this same pattern occurs in other subtropical gyres, this understanding of the underlying mechanisms not only facilitates simulating and forecasting phytoplankton dynamics but also provides a new perspective on how multiple stressors may impact phytoplankton communities in a warmer climate.</p></div>\",\"PeriodicalId\":20620,\"journal\":{\"name\":\"Progress in Oceanography\",\"volume\":\"225 \",\"pages\":\"Article 103281\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Oceanography\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0079661124000879\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OCEANOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Oceanography","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079661124000879","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
A “trapezoidal” relationship between solar radiation and chlorophyll concentrations at the center of the South Pacific Gyre
Understanding the driving mechanism of phytoplankton dynamics is key to forecasting future changes in the ocean. Here, we report an apparent “trapezoidal” relationship between chlorophyll concentrations (Chl) and surface photosynthetically available radiation (PAR(0)) at the center of the South Pacific Gyre (cSPG) based on 18 years of MODIS Aqua measurements. A comparison of Chl with a photoacclimation model revealed that photoacclimation alone could not explain the temporal dynamics of Chl. Instead, the Chl dynamics were explained by a combination of photoacclimation, nutrient limitation, and the grazing pressure of zooplankton at different times throughout the year. An annual “trapezoidal” spiral relationship between Chl and PAR(0) suggested that the steady state of phytoplankton populations at the cSPG could be influenced by the alternation of co-regulation mechanisms during a year. Because this same pattern occurs in other subtropical gyres, this understanding of the underlying mechanisms not only facilitates simulating and forecasting phytoplankton dynamics but also provides a new perspective on how multiple stressors may impact phytoplankton communities in a warmer climate.
期刊介绍:
Progress in Oceanography publishes the longer, more comprehensive papers that most oceanographers feel are necessary, on occasion, to do justice to their work. Contributions are generally either a review of an aspect of oceanography or a treatise on an expanding oceanographic subject. The articles cover the entire spectrum of disciplines within the science of oceanography. Occasionally volumes are devoted to collections of papers and conference proceedings of exceptional interest. Essential reading for all oceanographers.