{"title":"北雅加达工业区细颗粒物 (PM2.5) 化学成分的特征","authors":"Zeni Anggraini, Muhayatun Santoso, A. Sofyan","doi":"10.32526/ennrj/22/20230300","DOIUrl":null,"url":null,"abstract":"Air pollution around industrial area has become a serious concern for both the public and local government. Thus, research on PM2.5 characterization is urgently needed. This study identifies the concentration and chemical characteristics of PM2.5 to provide an in-depth understanding of the composition of these particles around the largest industrial complex in North Jakarta. Sixty samples of PM2.5 were collected from residential sites around industrial areas in North Jakarta. Samples were collected on Teflon filters using a SuperSASS instrument during the period from February to July 2023, representing the wet and dry seasons. Mass concentrations of PM2.5, black carbon, and 19 chemical elements were determined. The average mass concentration of PM2.5 in the wet and dry seasons was 27.81±11.82 µg/m3 and 46.63±14.37 µg/m3, respectively. Although the concentration of PM2.5 was lower during the wet season, the concentrations of black carbon and certain elements did not decrease significantly. This shows that pollutants play an important role in both seasons in the study location. Sulfur is the most abundant element with the average concentration in the dry season (2,727.89 ng/m3) higher than in the wet season (1,983.18 ng/m3). The PM2.5 mass reconstruction results show that ammonium sulfate and black carbon have the largest portion of PM2.5 mass. The results are expected to be used as a scientific reference in studying air pollution problems in this region and assist in formulating air protection policies to reduce PM2.5 emissions.","PeriodicalId":11784,"journal":{"name":"Environment and Natural Resources Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characteristics of Fine Particulate Matter (PM2.5) Chemical Composition in the North Jakarta Industrial Area\",\"authors\":\"Zeni Anggraini, Muhayatun Santoso, A. Sofyan\",\"doi\":\"10.32526/ennrj/22/20230300\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Air pollution around industrial area has become a serious concern for both the public and local government. Thus, research on PM2.5 characterization is urgently needed. This study identifies the concentration and chemical characteristics of PM2.5 to provide an in-depth understanding of the composition of these particles around the largest industrial complex in North Jakarta. Sixty samples of PM2.5 were collected from residential sites around industrial areas in North Jakarta. Samples were collected on Teflon filters using a SuperSASS instrument during the period from February to July 2023, representing the wet and dry seasons. Mass concentrations of PM2.5, black carbon, and 19 chemical elements were determined. The average mass concentration of PM2.5 in the wet and dry seasons was 27.81±11.82 µg/m3 and 46.63±14.37 µg/m3, respectively. Although the concentration of PM2.5 was lower during the wet season, the concentrations of black carbon and certain elements did not decrease significantly. This shows that pollutants play an important role in both seasons in the study location. Sulfur is the most abundant element with the average concentration in the dry season (2,727.89 ng/m3) higher than in the wet season (1,983.18 ng/m3). The PM2.5 mass reconstruction results show that ammonium sulfate and black carbon have the largest portion of PM2.5 mass. The results are expected to be used as a scientific reference in studying air pollution problems in this region and assist in formulating air protection policies to reduce PM2.5 emissions.\",\"PeriodicalId\":11784,\"journal\":{\"name\":\"Environment and Natural Resources Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environment and Natural Resources Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32526/ennrj/22/20230300\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environment and Natural Resources Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32526/ennrj/22/20230300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
Characteristics of Fine Particulate Matter (PM2.5) Chemical Composition in the North Jakarta Industrial Area
Air pollution around industrial area has become a serious concern for both the public and local government. Thus, research on PM2.5 characterization is urgently needed. This study identifies the concentration and chemical characteristics of PM2.5 to provide an in-depth understanding of the composition of these particles around the largest industrial complex in North Jakarta. Sixty samples of PM2.5 were collected from residential sites around industrial areas in North Jakarta. Samples were collected on Teflon filters using a SuperSASS instrument during the period from February to July 2023, representing the wet and dry seasons. Mass concentrations of PM2.5, black carbon, and 19 chemical elements were determined. The average mass concentration of PM2.5 in the wet and dry seasons was 27.81±11.82 µg/m3 and 46.63±14.37 µg/m3, respectively. Although the concentration of PM2.5 was lower during the wet season, the concentrations of black carbon and certain elements did not decrease significantly. This shows that pollutants play an important role in both seasons in the study location. Sulfur is the most abundant element with the average concentration in the dry season (2,727.89 ng/m3) higher than in the wet season (1,983.18 ng/m3). The PM2.5 mass reconstruction results show that ammonium sulfate and black carbon have the largest portion of PM2.5 mass. The results are expected to be used as a scientific reference in studying air pollution problems in this region and assist in formulating air protection policies to reduce PM2.5 emissions.
期刊介绍:
The Environment and Natural Resources Journal is a peer-reviewed journal, which provides insight scientific knowledge into the diverse dimensions of integrated environmental and natural resource management. The journal aims to provide a platform for exchange and distribution of the knowledge and cutting-edge research in the fields of environmental science and natural resource management to academicians, scientists and researchers. The journal accepts a varied array of manuscripts on all aspects of environmental science and natural resource management. The journal scope covers the integration of multidisciplinary sciences for prevention, control, treatment, environmental clean-up and restoration. The study of the existing or emerging problems of environment and natural resources in the region of Southeast Asia and the creation of novel knowledge and/or recommendations of mitigation measures for sustainable development policies are emphasized. The subject areas are diverse, but specific topics of interest include: -Biodiversity -Climate change -Detection and monitoring of polluted sources e.g., industry, mining -Disaster e.g., forest fire, flooding, earthquake, tsunami, or tidal wave -Ecological/Environmental modelling -Emerging contaminants/hazardous wastes investigation and remediation -Environmental dynamics e.g., coastal erosion, sea level rise -Environmental assessment tools, policy and management e.g., GIS, remote sensing, Environmental -Management System (EMS) -Environmental pollution and other novel solutions to pollution -Remediation technology of contaminated environments -Transboundary pollution -Waste and wastewater treatments and disposal technology