Zhenguang Li , Yaning Wang , Jielin Xu , Jing Wu , Huaping Wang
{"title":"通过固态拉丝工艺制备的具有更强(生物)降解性的异山梨醇基四聚酯单丝:合成与结构-性能关系","authors":"Zhenguang Li , Yaning Wang , Jielin Xu , Jing Wu , Huaping Wang","doi":"10.1016/j.giant.2024.100281","DOIUrl":null,"url":null,"abstract":"<div><p>To enhance the degradation rate of poly (butylene adipate-co-terephthalate) (PBAT) in the natural environment and to investigate the effect of modified monomers on the molding and structure of copolyester fibers, a series of isosorbide modified PBAT (PBIAT) tetrapolyesters were synthesized and monofilaments were prepared by solid-state drawing in this work. The experimental results revealed that the introduction of isosorbide formed a partial block structure in the molecular chain, and that a significant improvement in the properties of heat resistance and degradability of the copolyester was observed with the introduction of isosorbide. In the research of fiber forming and structure-property relationship by isosorbide, it was found that although the monofilament orientation process was affected by the V-shape structure of isosorbide, the change of the crystal structure under stress was similar to that of polybutylene terephthalate (PBT). The PBIAT monofilaments showed a decrease in the strength at break affected by the introduction of isosorbide but they still met the requirements for textile applications.</p></div>","PeriodicalId":34151,"journal":{"name":"GIANT","volume":"18 ","pages":"Article 100281"},"PeriodicalIF":5.4000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666542524000468/pdfft?md5=a22f835d08b365a0b46cfa57bda31d6a&pid=1-s2.0-S2666542524000468-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Monofilaments of isosorbide-based tetrapolyesters with enhanced (bio)degradability prepared by a solid-state drawing process: Synthesis and struture-property relations\",\"authors\":\"Zhenguang Li , Yaning Wang , Jielin Xu , Jing Wu , Huaping Wang\",\"doi\":\"10.1016/j.giant.2024.100281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To enhance the degradation rate of poly (butylene adipate-co-terephthalate) (PBAT) in the natural environment and to investigate the effect of modified monomers on the molding and structure of copolyester fibers, a series of isosorbide modified PBAT (PBIAT) tetrapolyesters were synthesized and monofilaments were prepared by solid-state drawing in this work. The experimental results revealed that the introduction of isosorbide formed a partial block structure in the molecular chain, and that a significant improvement in the properties of heat resistance and degradability of the copolyester was observed with the introduction of isosorbide. In the research of fiber forming and structure-property relationship by isosorbide, it was found that although the monofilament orientation process was affected by the V-shape structure of isosorbide, the change of the crystal structure under stress was similar to that of polybutylene terephthalate (PBT). The PBIAT monofilaments showed a decrease in the strength at break affected by the introduction of isosorbide but they still met the requirements for textile applications.</p></div>\",\"PeriodicalId\":34151,\"journal\":{\"name\":\"GIANT\",\"volume\":\"18 \",\"pages\":\"Article 100281\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666542524000468/pdfft?md5=a22f835d08b365a0b46cfa57bda31d6a&pid=1-s2.0-S2666542524000468-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GIANT\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666542524000468\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GIANT","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666542524000468","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
为了提高聚(己二酸丁二醇酯-对苯二甲酸丁二醇酯)(PBAT)在自然环境中的降解率,并研究改性单体对共聚酯纤维成型和结构的影响,本研究合成了一系列异山梨醇改性 PBAT(PBIAT)四元共聚酯,并通过固态拉伸制备了单丝。实验结果表明,异山梨醇的引入在分子链中形成了部分嵌段结构,并且随着异山梨醇的引入,共聚聚酯的耐热性和降解性得到了显著改善。在研究异山梨醇醚的纤维成型和结构-性能关系时发现,虽然单丝取向过程受到异山梨醇醚 V 型结构的影响,但晶体结构在应力作用下的变化与聚对苯二甲酸丁二醇酯(PBT)相似。PBIAT 单丝在引入异山梨醇后,断裂强度有所下降,但仍能满足纺织品应用的要求。
Monofilaments of isosorbide-based tetrapolyesters with enhanced (bio)degradability prepared by a solid-state drawing process: Synthesis and struture-property relations
To enhance the degradation rate of poly (butylene adipate-co-terephthalate) (PBAT) in the natural environment and to investigate the effect of modified monomers on the molding and structure of copolyester fibers, a series of isosorbide modified PBAT (PBIAT) tetrapolyesters were synthesized and monofilaments were prepared by solid-state drawing in this work. The experimental results revealed that the introduction of isosorbide formed a partial block structure in the molecular chain, and that a significant improvement in the properties of heat resistance and degradability of the copolyester was observed with the introduction of isosorbide. In the research of fiber forming and structure-property relationship by isosorbide, it was found that although the monofilament orientation process was affected by the V-shape structure of isosorbide, the change of the crystal structure under stress was similar to that of polybutylene terephthalate (PBT). The PBIAT monofilaments showed a decrease in the strength at break affected by the introduction of isosorbide but they still met the requirements for textile applications.
期刊介绍:
Giant is an interdisciplinary title focusing on fundamental and applied macromolecular science spanning all chemistry, physics, biology, and materials aspects of the field in the broadest sense. Key areas covered include macromolecular chemistry, supramolecular assembly, multiscale and multifunctional materials, organic-inorganic hybrid materials, biophysics, biomimetics and surface science. Core topics range from developments in synthesis, characterisation and assembly towards creating uniformly sized precision macromolecules with tailored properties, to the design and assembly of nanostructured materials in multiple dimensions, and further to the study of smart or living designer materials with tuneable multiscale properties.