{"title":"基于等级的序列特征选择,用于具有主效应和交互效应的高维加速故障时间模型","authors":"Ke Yu, Shan Luo","doi":"10.1016/j.csda.2024.107978","DOIUrl":null,"url":null,"abstract":"<div><p>High-dimensional accelerated failure time (AFT) models are commonly used regression models in survival analysis. Feature selection problem in high-dimensional AFT models is addressed, considering scenarios involving solely main effects or encompassing both main and interaction effects. A rank-based sequential feature selection (RankSFS) method is proposed, the selection consistency is established and illustrated by comparing it with existing methods through extensive numerical simulations. The results show that RankSFS achieves a higher Positive Discovery Rate (PDR) and lower False Discovery Rate (FDR). Additionally, RankSFS is applied to analyze the data on Breast Cancer Relapse. With a remarkable short computational time, RankSFS successfully identifies two crucial genes.</p></div>","PeriodicalId":55225,"journal":{"name":"Computational Statistics & Data Analysis","volume":"197 ","pages":"Article 107978"},"PeriodicalIF":1.5000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rank-based sequential feature selection for high-dimensional accelerated failure time models with main and interaction effects\",\"authors\":\"Ke Yu, Shan Luo\",\"doi\":\"10.1016/j.csda.2024.107978\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>High-dimensional accelerated failure time (AFT) models are commonly used regression models in survival analysis. Feature selection problem in high-dimensional AFT models is addressed, considering scenarios involving solely main effects or encompassing both main and interaction effects. A rank-based sequential feature selection (RankSFS) method is proposed, the selection consistency is established and illustrated by comparing it with existing methods through extensive numerical simulations. The results show that RankSFS achieves a higher Positive Discovery Rate (PDR) and lower False Discovery Rate (FDR). Additionally, RankSFS is applied to analyze the data on Breast Cancer Relapse. With a remarkable short computational time, RankSFS successfully identifies two crucial genes.</p></div>\",\"PeriodicalId\":55225,\"journal\":{\"name\":\"Computational Statistics & Data Analysis\",\"volume\":\"197 \",\"pages\":\"Article 107978\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Statistics & Data Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167947324000628\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics & Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167947324000628","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Rank-based sequential feature selection for high-dimensional accelerated failure time models with main and interaction effects
High-dimensional accelerated failure time (AFT) models are commonly used regression models in survival analysis. Feature selection problem in high-dimensional AFT models is addressed, considering scenarios involving solely main effects or encompassing both main and interaction effects. A rank-based sequential feature selection (RankSFS) method is proposed, the selection consistency is established and illustrated by comparing it with existing methods through extensive numerical simulations. The results show that RankSFS achieves a higher Positive Discovery Rate (PDR) and lower False Discovery Rate (FDR). Additionally, RankSFS is applied to analyze the data on Breast Cancer Relapse. With a remarkable short computational time, RankSFS successfully identifies two crucial genes.
期刊介绍:
Computational Statistics and Data Analysis (CSDA), an Official Publication of the network Computational and Methodological Statistics (CMStatistics) and of the International Association for Statistical Computing (IASC), is an international journal dedicated to the dissemination of methodological research and applications in the areas of computational statistics and data analysis. The journal consists of four refereed sections which are divided into the following subject areas:
I) Computational Statistics - Manuscripts dealing with: 1) the explicit impact of computers on statistical methodology (e.g., Bayesian computing, bioinformatics,computer graphics, computer intensive inferential methods, data exploration, data mining, expert systems, heuristics, knowledge based systems, machine learning, neural networks, numerical and optimization methods, parallel computing, statistical databases, statistical systems), and 2) the development, evaluation and validation of statistical software and algorithms. Software and algorithms can be submitted with manuscripts and will be stored together with the online article.
II) Statistical Methodology for Data Analysis - Manuscripts dealing with novel and original data analytical strategies and methodologies applied in biostatistics (design and analytic methods for clinical trials, epidemiological studies, statistical genetics, or genetic/environmental interactions), chemometrics, classification, data exploration, density estimation, design of experiments, environmetrics, education, image analysis, marketing, model free data exploration, pattern recognition, psychometrics, statistical physics, image processing, robust procedures.
[...]
III) Special Applications - [...]
IV) Annals of Statistical Data Science [...]