三七浆果中主要水溶性酸性多糖(AGBP-A3)的结构分析和抗炎活性

IF 6.8 2区 医学 Q1 CHEMISTRY, MEDICINAL Journal of Ginseng Research Pub Date : 2024-05-08 DOI:10.1016/j.jgr.2024.05.001
{"title":"三七浆果中主要水溶性酸性多糖(AGBP-A3)的结构分析和抗炎活性","authors":"","doi":"10.1016/j.jgr.2024.05.001","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p><em>Panax quinquefolius</em> L, widely recognized for its valuable contributions to medicine, has aroused considerable attention globally. Different from the extensive research has been dedicated to the root of <em>P. quinquefolius</em>, its berry has received relatively scant focus. Given its promising medicinal properties, this study was focused on the structural characterizations and anti-inflammatory potential of acidic polysaccharides from the <em>P. quinquefolius</em> berry.</p></div><div><h3>Materials and methods</h3><p><em>P. quinquefolius</em> berry was extracted with hot water, precipitated by alcohol, separated by DEAE-52-cellulose column to give a series of fractions. One of these fractions was further purified via Sephadex G-200 column to give three fractions. Then, the main fraction named as AGBP-A3 was characterized by methylation analysis, NMR spectroscopy, etc. Its anti-inflammatory activity was assessed by RAW 264.7 cell model, zebrafish model and molecular docking.</p></div><div><h3>Results</h3><p>The main chain comprised of <em>α</em>-L-Rhap, <em>α</em>-D-GalAp and <em>β</em>-D-Galp, while the branch consisted mainly of <em>α</em>-L-Araf, <em>β</em>-D-Glcp, <em>α</em>-D-GalAp, <em>β</em>-D-Galp. The RAW264.7 cell assay results showed that the inhibition rates against IL-6 and IL-1<em>β</em> secretion at the concentration of 625 ng/mL were 24.83 %, 11.84 %, while the inhibition rate against IL-10 secretion was 70.17 % at the concentration of 312 ng/mL. In the zebrafish assay, the migrating neutrophils were significantly reduced in number, and their migration to inflammatory tissues was inhibited. Molecular docking predictions correlated well with the results of the anti-inflammatory assay.</p></div><div><h3>Conclusion</h3><p>The present study demonstrated the structure of acidic polysaccharides of <em>P. quinquefolius</em> berry and their effect on inflammation, providing a reference for screening anti-inflammatory drugs.</p></div>","PeriodicalId":16035,"journal":{"name":"Journal of Ginseng Research","volume":null,"pages":null},"PeriodicalIF":6.8000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S122684532400085X/pdfft?md5=8ecd2e0266fe3f2d5ee70973358f10cb&pid=1-s2.0-S122684532400085X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Structural analysis, anti-inflammatory activity of the main water-soluble acidic polysaccharides (AGBP-A3) from Panax quinquefolius L berry\",\"authors\":\"\",\"doi\":\"10.1016/j.jgr.2024.05.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p><em>Panax quinquefolius</em> L, widely recognized for its valuable contributions to medicine, has aroused considerable attention globally. Different from the extensive research has been dedicated to the root of <em>P. quinquefolius</em>, its berry has received relatively scant focus. Given its promising medicinal properties, this study was focused on the structural characterizations and anti-inflammatory potential of acidic polysaccharides from the <em>P. quinquefolius</em> berry.</p></div><div><h3>Materials and methods</h3><p><em>P. quinquefolius</em> berry was extracted with hot water, precipitated by alcohol, separated by DEAE-52-cellulose column to give a series of fractions. One of these fractions was further purified via Sephadex G-200 column to give three fractions. Then, the main fraction named as AGBP-A3 was characterized by methylation analysis, NMR spectroscopy, etc. Its anti-inflammatory activity was assessed by RAW 264.7 cell model, zebrafish model and molecular docking.</p></div><div><h3>Results</h3><p>The main chain comprised of <em>α</em>-L-Rhap, <em>α</em>-D-GalAp and <em>β</em>-D-Galp, while the branch consisted mainly of <em>α</em>-L-Araf, <em>β</em>-D-Glcp, <em>α</em>-D-GalAp, <em>β</em>-D-Galp. The RAW264.7 cell assay results showed that the inhibition rates against IL-6 and IL-1<em>β</em> secretion at the concentration of 625 ng/mL were 24.83 %, 11.84 %, while the inhibition rate against IL-10 secretion was 70.17 % at the concentration of 312 ng/mL. In the zebrafish assay, the migrating neutrophils were significantly reduced in number, and their migration to inflammatory tissues was inhibited. Molecular docking predictions correlated well with the results of the anti-inflammatory assay.</p></div><div><h3>Conclusion</h3><p>The present study demonstrated the structure of acidic polysaccharides of <em>P. quinquefolius</em> berry and their effect on inflammation, providing a reference for screening anti-inflammatory drugs.</p></div>\",\"PeriodicalId\":16035,\"journal\":{\"name\":\"Journal of Ginseng Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S122684532400085X/pdfft?md5=8ecd2e0266fe3f2d5ee70973358f10cb&pid=1-s2.0-S122684532400085X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Ginseng Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S122684532400085X\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ginseng Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S122684532400085X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

背景五加科植物板蓝根(Panax quinquefolius L)因其对医学的宝贵贡献而广受认可,在全球范围内引起了极大的关注。与人们对五加科植物根的广泛研究不同,人们对其浆果的关注相对较少。材料和方法用热水提取五倍子浆果,用酒精沉淀,用 DEAE-52 纤维素柱分离,得到一系列馏分。其中一个馏分经 Sephadex G-200 柱进一步纯化,得到三个馏分。然后,通过甲基化分析、核磁共振光谱等方法对名为 AGBP-A3 的主要馏分进行表征。结果 主链由α-L-Rhap、α-D-GalAp和β-D-Galp组成,支链主要由α-L-Araf、β-D-Glcp、α-D-GalAp和β-D-Galp组成。RAW264.7 细胞试验结果表明,浓度为 625 ng/mL 时,对 IL-6 和 IL-1β 分泌的抑制率分别为 24.83 % 和 11.84 %;浓度为 312 ng/mL 时,对 IL-10 分泌的抑制率为 70.17 %。在斑马鱼试验中,迁移的中性粒细胞数量明显减少,其向炎症组织的迁移也受到抑制。本研究证明了五倍子浆果酸性多糖的结构及其对炎症的影响,为筛选抗炎药物提供了参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Structural analysis, anti-inflammatory activity of the main water-soluble acidic polysaccharides (AGBP-A3) from Panax quinquefolius L berry

Background

Panax quinquefolius L, widely recognized for its valuable contributions to medicine, has aroused considerable attention globally. Different from the extensive research has been dedicated to the root of P. quinquefolius, its berry has received relatively scant focus. Given its promising medicinal properties, this study was focused on the structural characterizations and anti-inflammatory potential of acidic polysaccharides from the P. quinquefolius berry.

Materials and methods

P. quinquefolius berry was extracted with hot water, precipitated by alcohol, separated by DEAE-52-cellulose column to give a series of fractions. One of these fractions was further purified via Sephadex G-200 column to give three fractions. Then, the main fraction named as AGBP-A3 was characterized by methylation analysis, NMR spectroscopy, etc. Its anti-inflammatory activity was assessed by RAW 264.7 cell model, zebrafish model and molecular docking.

Results

The main chain comprised of α-L-Rhap, α-D-GalAp and β-D-Galp, while the branch consisted mainly of α-L-Araf, β-D-Glcp, α-D-GalAp, β-D-Galp. The RAW264.7 cell assay results showed that the inhibition rates against IL-6 and IL-1β secretion at the concentration of 625 ng/mL were 24.83 %, 11.84 %, while the inhibition rate against IL-10 secretion was 70.17 % at the concentration of 312 ng/mL. In the zebrafish assay, the migrating neutrophils were significantly reduced in number, and their migration to inflammatory tissues was inhibited. Molecular docking predictions correlated well with the results of the anti-inflammatory assay.

Conclusion

The present study demonstrated the structure of acidic polysaccharides of P. quinquefolius berry and their effect on inflammation, providing a reference for screening anti-inflammatory drugs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Ginseng Research
Journal of Ginseng Research CHEMISTRY, MEDICINAL-INTEGRATIVE & COMPLEMENTARY MEDICINE
CiteScore
11.40
自引率
9.50%
发文量
111
审稿时长
6-12 weeks
期刊介绍: Journal of Ginseng Research (JGR) is an official, open access journal of the Korean Society of Ginseng and is the only international journal publishing scholarly reports on ginseng research in the world. The journal is a bimonthly peer-reviewed publication featuring high-quality studies related to basic, pre-clinical, and clinical researches on ginseng to reflect recent progresses in ginseng research. JGR publishes papers, either experimental or theoretical, that advance our understanding of ginseng science, including plant sciences, biology, chemistry, pharmacology, toxicology, pharmacokinetics, veterinary medicine, biochemistry, manufacture, and clinical study of ginseng since 1976. It also includes the new paradigm of integrative research, covering alternative medicinal approaches. Article types considered for publication include review articles, original research articles, and brief reports. JGR helps researchers to understand mechanisms for traditional efficacy of ginseng and to put their clinical evidence together. It provides balanced information on basic science and clinical applications to researchers, manufacturers, practitioners, teachers, scholars, and medical doctors.
期刊最新文献
Corrigendum to “Ginsenoside compound K protects human umbilical vein endothelial cells against oxidized low-density lipoprotein-induced injury via inhibition of nuclear factor-kB, p38, and JNK MAPK pathways” [J Ginseng Res 43 (2019) 95–104] Panax notoginseng saponins promotes angiogenesis after cerebral ischemia-reperfusion injury Ethanol extract of lymphanax with gypenoside 17 and ginsenoside Re exerts anti-inflammatory properties by targeting the AKT/NF-κB pathway Enhancement of skin regeneration through activation of TGF-β/SMAD signaling pathway by Panax ginseng meyer non-edible callus-derived extracellular vesicles Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1