Cláudia Fontana , Lidio López , Guaciara M. Santos , Ricardo Villalba , Bruna Hornink , Gabriel Assis-Pereira , Fidel A. Roig , Mario Tomazello-Filho
{"title":"巴西南部 Cedrela fissilis(楝科)的新年代学:结合经典树木年代学和放射性碳年代测定法","authors":"Cláudia Fontana , Lidio López , Guaciara M. Santos , Ricardo Villalba , Bruna Hornink , Gabriel Assis-Pereira , Fidel A. Roig , Mario Tomazello-Filho","doi":"10.1016/j.dendro.2024.126214","DOIUrl":null,"url":null,"abstract":"<div><p><em>Cedrela fissilis</em> is a tree species widely distributed in the tropical biomes of South America. This species has visible annual growth rings and can live for several centuries. The present study aims to (i) develop a chronology of <em>C. fissilis</em> to the Southern Brazilian Plateau using traditional dendrochronological methods, (ii) validate the dendrochronological dating using the radiocarbon (<sup>14</sup>C) bomb pulse method, and (iii) determine the influence of temperature and precipitation variations and their teleconnections with the tropical Pacific Ocean temperatures on the annual radial growth of this species. The ring width chronology was developed using 24 <em>C. fissilis</em> trees. The Schulman years of 1957, 1962, 1963, 1966, 1969 and 1974 were independently dated using the <sup>14</sup>C bomb pulse methodology by accelerator mass spectrometry (AMS). Tree-ring indices were compared with temperature and precipitation records from stations around the study forest. The chronology covers the period 1907–2018 (111 years) and is well replicated (> 10 trees) from 1941 onwards. Statistics commonly used in dendrochronology indicate that the chronology is highly reliable and of good quality (mean series intercorrelation r = 0.49; Rbar = 0.30; EPS = 0.86; MSI = 0.40). The <sup>14</sup>C bomb pulse of selected calendar years showed that the trees were accurately dated using the classical cross-dating approach. Precipitation from November to December (wet period) is positively correlated with tree growth (r = 0.36, n = 49; p<0.05). In addition, variations in temperature from May to July are positively correlated with ring width (r = 0.39, n = 49; p<0.05), suggesting that <em>C. fissilis</em> growth is favored by abundant rainfall during the growing season and above-average winter temperatures. Interannual variation in the chronology is partially modulated by El Niño 3.4 (East Central Tropical Pacific Sea Surface Temperature) during Oct-Dec (r = 0.27, n = 68, p<0.05). The growth of <em>C. fissilis</em> trees is directly dependent on climate variability, suggesting that more abundant precipitation and higher winter temperatures, as projected for the future climate of southern Brazil, will have a positive effect on tree growth. However, prolonged droughts and high temperatures during the growing season will have a negative impact on tree growth, even in humid forests with high soil moisture content.</p></div>","PeriodicalId":50595,"journal":{"name":"Dendrochronologia","volume":"85 ","pages":"Article 126214"},"PeriodicalIF":2.7000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new chronology of Cedrela fissilis (Meliaceae) for Southern Brazil: Combining classical dendrochronology and radiocarbon dating\",\"authors\":\"Cláudia Fontana , Lidio López , Guaciara M. Santos , Ricardo Villalba , Bruna Hornink , Gabriel Assis-Pereira , Fidel A. Roig , Mario Tomazello-Filho\",\"doi\":\"10.1016/j.dendro.2024.126214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><em>Cedrela fissilis</em> is a tree species widely distributed in the tropical biomes of South America. This species has visible annual growth rings and can live for several centuries. The present study aims to (i) develop a chronology of <em>C. fissilis</em> to the Southern Brazilian Plateau using traditional dendrochronological methods, (ii) validate the dendrochronological dating using the radiocarbon (<sup>14</sup>C) bomb pulse method, and (iii) determine the influence of temperature and precipitation variations and their teleconnections with the tropical Pacific Ocean temperatures on the annual radial growth of this species. The ring width chronology was developed using 24 <em>C. fissilis</em> trees. The Schulman years of 1957, 1962, 1963, 1966, 1969 and 1974 were independently dated using the <sup>14</sup>C bomb pulse methodology by accelerator mass spectrometry (AMS). Tree-ring indices were compared with temperature and precipitation records from stations around the study forest. The chronology covers the period 1907–2018 (111 years) and is well replicated (> 10 trees) from 1941 onwards. Statistics commonly used in dendrochronology indicate that the chronology is highly reliable and of good quality (mean series intercorrelation r = 0.49; Rbar = 0.30; EPS = 0.86; MSI = 0.40). The <sup>14</sup>C bomb pulse of selected calendar years showed that the trees were accurately dated using the classical cross-dating approach. Precipitation from November to December (wet period) is positively correlated with tree growth (r = 0.36, n = 49; p<0.05). In addition, variations in temperature from May to July are positively correlated with ring width (r = 0.39, n = 49; p<0.05), suggesting that <em>C. fissilis</em> growth is favored by abundant rainfall during the growing season and above-average winter temperatures. Interannual variation in the chronology is partially modulated by El Niño 3.4 (East Central Tropical Pacific Sea Surface Temperature) during Oct-Dec (r = 0.27, n = 68, p<0.05). The growth of <em>C. fissilis</em> trees is directly dependent on climate variability, suggesting that more abundant precipitation and higher winter temperatures, as projected for the future climate of southern Brazil, will have a positive effect on tree growth. However, prolonged droughts and high temperatures during the growing season will have a negative impact on tree growth, even in humid forests with high soil moisture content.</p></div>\",\"PeriodicalId\":50595,\"journal\":{\"name\":\"Dendrochronologia\",\"volume\":\"85 \",\"pages\":\"Article 126214\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dendrochronologia\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1125786524000511\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dendrochronologia","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1125786524000511","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
A new chronology of Cedrela fissilis (Meliaceae) for Southern Brazil: Combining classical dendrochronology and radiocarbon dating
Cedrela fissilis is a tree species widely distributed in the tropical biomes of South America. This species has visible annual growth rings and can live for several centuries. The present study aims to (i) develop a chronology of C. fissilis to the Southern Brazilian Plateau using traditional dendrochronological methods, (ii) validate the dendrochronological dating using the radiocarbon (14C) bomb pulse method, and (iii) determine the influence of temperature and precipitation variations and their teleconnections with the tropical Pacific Ocean temperatures on the annual radial growth of this species. The ring width chronology was developed using 24 C. fissilis trees. The Schulman years of 1957, 1962, 1963, 1966, 1969 and 1974 were independently dated using the 14C bomb pulse methodology by accelerator mass spectrometry (AMS). Tree-ring indices were compared with temperature and precipitation records from stations around the study forest. The chronology covers the period 1907–2018 (111 years) and is well replicated (> 10 trees) from 1941 onwards. Statistics commonly used in dendrochronology indicate that the chronology is highly reliable and of good quality (mean series intercorrelation r = 0.49; Rbar = 0.30; EPS = 0.86; MSI = 0.40). The 14C bomb pulse of selected calendar years showed that the trees were accurately dated using the classical cross-dating approach. Precipitation from November to December (wet period) is positively correlated with tree growth (r = 0.36, n = 49; p<0.05). In addition, variations in temperature from May to July are positively correlated with ring width (r = 0.39, n = 49; p<0.05), suggesting that C. fissilis growth is favored by abundant rainfall during the growing season and above-average winter temperatures. Interannual variation in the chronology is partially modulated by El Niño 3.4 (East Central Tropical Pacific Sea Surface Temperature) during Oct-Dec (r = 0.27, n = 68, p<0.05). The growth of C. fissilis trees is directly dependent on climate variability, suggesting that more abundant precipitation and higher winter temperatures, as projected for the future climate of southern Brazil, will have a positive effect on tree growth. However, prolonged droughts and high temperatures during the growing season will have a negative impact on tree growth, even in humid forests with high soil moisture content.
期刊介绍:
Dendrochronologia is a peer-reviewed international scholarly journal that presents high-quality research related to growth rings of woody plants, i.e., trees and shrubs, and the application of tree-ring studies.
The areas covered by the journal include, but are not limited to:
Archaeology
Botany
Climatology
Ecology
Forestry
Geology
Hydrology
Original research articles, reviews, communications, technical notes and personal notes are considered for publication.